

STORMWATER MANAGEMENT and EROSION CONTROL PLAN for NORTHWEST AUTOBODY STORAGE YARD PONDERAY, IDAHO

Project:

The applicant is proposing to construct a gravel surfaced storage

yard.

Landowner:

Northwest Autobody 1202 Triangle Dr.

Ponderay, ID 83852

Prepared by:

James A. Sewell & Associates, LLC

1319 North Division Avenue Sandpoint, Idaho 83864

Northwest Autobody Storage Yard SWMP Page 1 May 20, 2022

INTRODUCTION

Northwest Autobody is proposing to construct a gravel surface storage yard on an undeveloped 1-acre parcel of land located adjacent to Schweitzer Plaza Drive in Ponderay, ID. As a result, approximately 39,873 sf of impervious surface will be installed. The purpose of this report is to recommend facilities to control storm water runoff from the described impervious surfaces and prevent erosion and sediment transport. The design and selection of storm water facilities are based on soil information obtained from the "NRCS Web Soil Survey, Bonner County Area, Idaho" and limited to topography and apparent site conditions at the time analysis was performed.

During frequent storm events, runoff will be detained onsite in shallow grass lined filtration swales and landscaped areas prior to regaining predevelopment flow patterns.

EXISTING SITE CONDITIONS

The site is currently undeveloped and slopes gently in all directions. Land cover consists of open pasture with native grass.

SOILS

The NRCS classifies native soil in the area as Mission Silt Loam. The soil has a low infiltration rate and depth to water table is generally 6-inches to 18-inches below the surface.

A summary of the typical properties of each soil type found on the site is included in Appendix A, and is taken from the NCRS Soil Survey of Bonner County Area, Idaho, Parts of Bonner and Boundary Counties (Version 14, September 13, 2018).

.

PRE-CONSTRUCTION LAND COVER - TOTAL SITE

Total Undeveloped Area (C = 0.3) = 1.06 ac Composite Runoff Coefficient (C) = 0.30

POST-CONSTRUCTION LAND COVER - TOTAL SITE

Total Area = 1.06 ac Compacted Gravel (C= 0.5) = 0.92 ac Green Space (C= 0.3) = 0.15 ac Composite Runoff Coefficient (C) = 0.47

STORMWATER MANAGEMENT

Based on the given site, topography and soil characteristics, surface dispersion of storm water and shallow detainment areas are recommended for flow management and treatment. It is further recommended that site disturbance be minimal and existing, well vegetated areas be retained and protected as much as possible.

The proposed filtration facilities have been sized to retain and treat the first ½" of runoff

from impervious surfaces and detain the difference between pre-development and post-development flow rates based on a 25-year storm event, 24-hour period. Post development flows will be detained and released at pre-development rates by transmissivity through geotextile fabric.

The site has been divided into two drainage areas, including the west portion of the site (0.48-acres) and the east drainage area (0.58-acres). Filtration swales have been designed for each drainage area and presented in the calculations and on the plans as either GFA 1a and 1b servicing the west side of the site, or 2a and 2b serving the east portion. The calculations also include an analysis of the site considering a combine grassy swale area to verify the overall detention rate.

Calculation Summary – Grassy Filtration Area Detention Design

Total Site – Predevelopment Conditions

Undeveloped Area = 1.06 ac Time of Concentration = 10 min. Runoff Coefficient = 0.3 Predeveloped Peak Flow = 0.69 cfs

Total Site - Post Development Conditions

Developed Area = 1.06 ac Impervious Surface =0.92 ac Green Space = 0.15 ac Time of Concentration = 5 min. Composite Runoff Coefficient = 0.47 Post Developed Peak Flow = 1.4 cfs

Total Site - Resulting Filtration Volume Required

First ½-inch of Runoff = 1661 cf 24-hour, 25-year Storm = 1197 cf (Bowstring Method) Swale Volume Provided = 1980 cf (see Bowstring Method calculation in Appendix B for details)

Area 1a – Predevelopment Conditions

Undeveloped Area = 0.3 ac
Time of Concentration = 10 min.
Runoff Coefficient = 0.3
Predeveloped Peak Flow = 0.2 cfs

<u>Area 1a – Post Development Conditions</u>

Developed Area = 0.3 ac Impervious Surface =0.26 ac Green Space = 0.04 ac

Northwest Autobody Storage Yard SWMP Page 3 May 20, 2022 Time of Concentration = 5 min. Composite Runoff Coefficient = 0.47 Post Developed Peak Flow = 0.4 cfs

Area 1a - Resulting Filtration Volume Required

First ½-inch of Runoff = 467 cf 24-hour, 25-year Storm = 351 cf (Bowstring Method) Swale Volume Provided = 597 cf

Area 1b - Predevelopment Conditions

Undeveloped Area = 0.18 ac Time of Concentration = 10 min. Runoff Coefficient = 0.3 Predeveloped Peak Flow = 0.12 cfs

Area 1b - Post Development Conditions

Developed Area = 0.18 ac Impervious Surface = 0.16 ac Green Space = 0.02 ac Time of Concentration = 5 min. Composite Runoff Coefficient = 0.48 Post Developed Peak Flow = 0.24 cfs

Area 1b - Resulting Filtration Volume Required

First ½-inch of Runoff = 296 cf 24-hour, 25-year Storm = 180 cf (Bowstring Method) Swale Volume Provided = 297 cf

Area 2a - Predevelopment Conditions

Undeveloped Area = 0.28 ac Time of Concentration = 10 min. Runoff Coefficient = 0.3 Predeveloped Peak Flow = 0.18 cfs

Area 2a - Post Development Conditions

Developed Area = 0.28 ac Impervious Surface = 0.24 ac Green Space = 0.04 ac Time of Concentration = 5 min. Composite Runoff Coefficient = 0.47 Post Developed Peak Flow = 0.37 cfs

Area 2a - Resulting Filtration Volume Required

First ½-inch of Runoff = 434 cf

Northwest Autobody Storage Yard SWMP Page 4 May 20, 2022 24-hour, 25-year Storm = 318 cf (Bowstring Method) Swale Volume Provided = 539 cf

Area 2b - Predevelopment Conditions

Undeveloped Area = 0.3 ac Time of Concentration = 10 min. Runoff Coefficient = 0.3 Predeveloped Peak Flow = 0.19 cfs

Area 2b - Post Development Conditions

Developed Area = 0.3 ac Impervious Surface =0.26 ac Green Space = 0.04 ac Time of Concentration = 5 min. Composite Runoff Coefficient = 0.47 Post Developed Peak Flow = 0.39 cfs

Area 2b - Resulting Filtration Volume Required

First ½-inch of Runoff = 465 cf 24-hour, 25-year Storm = 348 cf (Bowstring Method) Swale Volume Provided = 487 cf

EROSION CONTROL PLAN

Temporary erosion control shall be maintained through the use of existing vegetation and an existing stabilized construction entrance (gravel access road). Permanent facilities that will also serve to control erosion during construction which include grass infiltration basins, grass or rock-lined ditches, existing vegetated buffers, and reseeding of disturbed areas. Use the BMP's described in *Catalog of Stormwater Best Management Practices for Idaho Cities and Counties* (Idaho BMP Manual). Silt fence shall be placed downslope of construction areas as shown in the stormwater management plan. Areas where construction activities temporarily cease for more than 21 days shall be stabilized with seeding or straw mulching. All erosion control measures shall be maintained in good working order. The contractor shall be responsible for maintenance of erosion control measures until such time that final stabilization of the site is complete. Once final stabilization is complete, the owner shall be responsible for maintenance of permanent erosion control measures.

Site Re-seeding Recommendation:

Existing areas disturbed during construction shall be reseeded with natural grasses, lawn grasses, or sod as soon as possible after finish grading. Seed mixture recommendations may be obtained from the U.S.D.A. Natural Resource Conservation Service, a licensed landscape architect or a commercially marketed grass mixture may be applied.

Fertilization

It is recommended that a soil analysis be performed prior to fertilization and seeding. The fertilization guidelines should be determined by the soil analysis. The fertilizer type and rate of application should follow the recommendation of the U.S.D.A. Natural Resource Conservation Service or a landscape architect.

OPERATION AND MAINTENANCE PLAN

During Construction

During construction the contractor shall walk the site and inspect storm water and erosion control measures at least once every 7 days and following any storm event of 0.5 inches or greater. Items the contractor shall inspect are:

- · Reseeding / Straw Mulching
 - Re-seed add straw mulch to bare spots and washouts, and verify healthy growth
- Grass ditches and/or Rock-Lined channels
 - Periodically inspect ditches or and/or channels and remove any sediment deeper than 6 inches
 - Re-establish vegetation that is damaged during high runoff events.
 - Add additional rock as necessary to prevent erosion of channel sides and bottom
- Grass infiltration basins
 - Periodically inspect basins and remove any sediment deeper than 6 inches
 - Re-establish vegetation that is damaged during high runoff events.

If maintenance of any temporary or final BMP is found to be necessary, the contractor shall begin repairs within 24 hours.

After Final Stabilization

Upon completion of construction and final stabilization, the owners shall take responsibility for operation and maintenance of the stormwater management and erosion control system as well as the funding for the continued maintenance of this system. After final stabilization, the stormwater management and erosion control system shall be inspected at least every six months. The items that shall be inspected are:

- Grass filtration swales
 - Remove all sediment from the basin and dispose off-site at the end of construction, and during each inspection.
- Grass ditches and/or Rock-Lined Channels
 - Remove all sediment from the ditches and/or channels and dispose off-site at the end of construction, and during each inspection.

Sloped areas

 Re-establish grass or vegetation in bare spots found on all sloped areas, or stabilize with another best management practice.

IMPLEMENTATION SCHEDULE

The proposed construction schedule is as follows:

Spring 2022

- Install temporary erosion control
- Perform fill and excavation work for building pad, utilities and drive surfaces

Summer 2022

- Complete construction
- Check re-vegetated areas for bare spots, washouts, etc.

Late Summer/Fall 2022

- Repair and reseed as necessary
- Final stabilization complete

SUMMARY

With the proper implementation of the best management practices listed above, the subject property is capable of supporting the proposed site development without substantial risk of soil erosion or sedimentation of surface waters. The site is capable of treating and conveying stormwater runoff from the proposed pavement using the best management practices described in this report.

APPENDIX A

NRCS Soils Classification, IDF Curve Area Classification Map, Rainfall Intensity Diagram, Runoff Coefficients

Bonner County Area, Idaho, Parts of Bonner and Boundary Counties

31—Mission silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 5462 Elevation: 2,000 to 2,800 feet

Mean annual precipitation: 25 to 38 inches Mean annual air temperature: 43 to 45 degrees F

Frost-free period: 90 to 120 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Mission and similar soils: 75 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mission

Setting

Landform: Lake terraces

Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Volcanic ash and loess over silty glaciolacustrine deposits

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 3 inches: silt loam
Bw - 3 to 12 inches: silt loam
2Btx - 12 to 21 inches: silt loam
2E - 21 to 33 inches: silt
2Bt - 33 to 48 inches: silt loam

3C - 48 to 67 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: 10 to 20 inches to fragipan

Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Very low

to moderately low (0.00 to 0.06 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent Available water capacity: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): 6e

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Ecological site: F043AY527WA - Warm-Frigid, Udic, Loamy Foothills/Valleys, high water table (western redcedar, moist

herb) Thuja plicata / Clintonia uniflora

Other vegetative classification: western redcedar/queencup

beadlily (CN530)

Hydric soil rating: No

Minor Components

Hoodoo

Percent of map unit: 3 percent Landform: Flood plains, drainageways Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes

Odenson

Percent of map unit: 2 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Bonner County Area, Idaho, Parts of Bonner and Boundary

Counties

Survey Area Data: Version 16, Jun 4, 2020

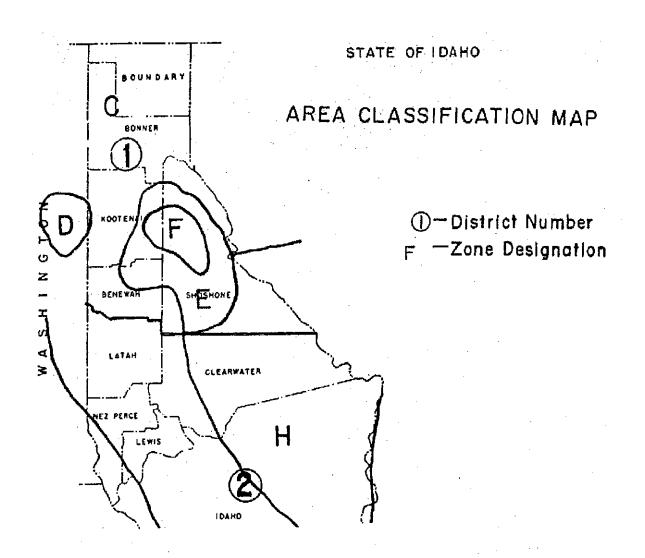


FIGURE 6-3 AREA CLASSIFICATION MAP FOR IDF CURVES - IDAHO (IDAHO TRANSPORTATION DEPARTMENT)

FIGURE 6-4 ZONE C, INTENSITY-DURATION-FREQUENCY CURVE (IDAHO TRANSPORTATION DEPARTMENT)

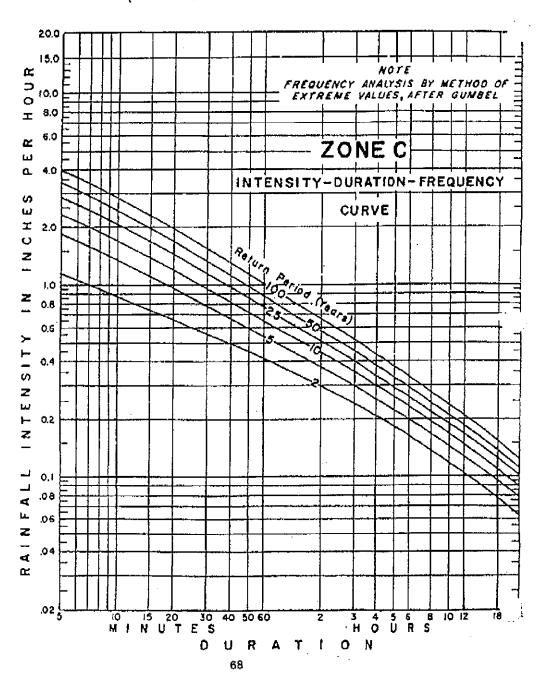


Table 4B.2. Values of Runoff Coefficient (C) for Rational Formula

		Hydrologic Soils Group				
Land Use	Description		В	C	D	
Cultivated Land	Without conservation treatment	0.49	0.67	0.81	0.88	
	With conservation treatment		0.43	0.67	0.67	
Pasture or Range Land	Poor condition	0.38	0.63	0.78	0.84	
	Good condition		0.25	0.51	0,65	
Meadow	Good condition			0.41	0.61	
Wood or Forest Land	Thin stand, poor cover, no mulch	e-17	0.34	0.59	0.70	
	Good cover			0.45	0.59	
Open Space, Lawn, Park, Golf Course, or Cemetery	Good condition (grass cover on 75% or more)		0.25	0.51	0.65	
	Fair condition (grass cover on 50% to 75%)		0.45	0.63	0.74	
Commercial and Business Area	85% impervious	0.84	0.90	0.93	0.96	
Industrial District	72% impervious	0,67	0.81	0.88	0.92	
Residential Lot Average lot size (acres): 1/8 1/4 1/3 1/2 1.0	Average % of lot impervious: 65 38 30 25 20	0.29	0.76 0.55 0.49 0.45 0.41	0.70 0.67 0.65	0.90 0.80 0.78 0.76 0.74	
Paved Area	Parking lots, roofs, driveways, etc.	0.99	0.99	0.99	0.99	
Street or Road	Paved with curbs and storm sewers	0.57	0.76	0.84	0.99 0.88	
	Gravel	0.49	0.69	0,80	0.84	

Note: The designer must use judgment to select the appropriate C value within the range. Generally, larger areas with permeable soils, flat slopes, and dense vegetation should have the lowest C values. Smaller areas with dense soils, moderate to steep slopes, and sparse vegetation should assigned the highest C values.

SOURCE: Panhandle Stormwater Erosion Control and Education Program Training Manual (2007)

<u>APPENDIX B</u>

Storm Water Management Calculations

Combined Grassy Filtration Area - Total Project Area

DATE:	5/4/2021					
Design Storm Retu	urn Period		25	yr	Infiltration (max. 2 in/h	r)
					Infiltration Rate	
Drywell Outflow			0.00	cfs	(in/hr)=	0.00
Bed of GIA Outflo	W		0.00	cfs	GIA Bed Area (sf) =	0
Check Dam Outflo	w (Geotex + Drain Rock)		0.007	cfs	Fabric Transmissivity	
Wier Outflow			0.00	cfs	Trans. Rate (cfs/sf)=	0.004
Orifice Outflow			0.00	cfs	Outlet Area (sf) =	2.00
					Treatment Storage	
Post Developed					(cf)	WALKER STATE OF STATE
Area			1.06	acres	First 1/2-Inch Runoff =	1,661
Composite Runoff	Coefficient		0.47			
AxC=			0.50		Drywell Capacities	
Time of Concentra	ntion		5.00	min	Single Barell (cfs) =	0.30
Pre-Developed:					Double Barell (cfs) =	1.00
Sub Basin Area			1.06	acres		
Composite Runoff	Coefficient		0.30			
AxC=			0.32			
Time of Concentra	ntion		10	min		
Pre-Developed Flo	ow Rate (cfs)		0.69	(flow rate	e based on 10-min time of coi	ncentration)
	25 V	C1				0

_								
	•		25-Year Storm					Operating
	Time (min)	Time (sec)	Intensity (in/hr)	Qpost(cfs)	Vpost (cf)	Qpre(cfs)	Vpre(cf)	Storage (cf)
	5	300	2.8	1.40	564	0.89	358	204
	10	600	2.17	1.09	764	0.69	485	275
	15	900	1.83	0.92	919	0.58	583	329
	20	1200	1.65	0.83	1,077	0.53	684	385
	25	1500	1.45	0.73	1,164	0.46	739	414
	30	1800	1.27	0.64	1,211	0.40	769	429
	35	2100	1.19	0.60	1,313	0.38	834	465
	40	2400	1.11	0.56	1,392	0.35	884	491
	45	2700	1.04	0.52	1,461	0.33	927	514
	50	3000	0.96	0.48	1,493	0.31	948	524
	55	3300	0.88	0.44	1,501	0.28	953	524
	60	3600	0.8	0.40	1,485	0.25	942	516
	65	3900	0.78	0.39	1,565	0.25	993	543
	70	4200	0.75	0.38	1,617	0.24	1,027	560
	75	4500	0.72	0.36	1,661	0.23	1,054	574
	80	4800	0.7	0.35	1,720	0.22	1,092	594
	85	5100	0.67	0.34	1,747	0.21	1,109	601
	90	5400	0.65	0.33	1,793	0.21	1,138	616
	95	5700	0.63	0.32	1,832	0.20	1,163	628
	100	6000	0.61	0.31	1,866	0.19	1,184	638

105	6300	0.59	0.30	1,893	0.19	1,202	646
110	6600	0.57	0.29	1,915	0.18	1,215	652
115	6900	0.55	0.28	1,930	0.18	1,225	655
120	7200	0.53	0.27	1,940	0.17	1,231	657
125	7500	0.51	0.26	1,943	0.16	1,234	656
130	7800	0.49	0.25	1,941	0.16	1,232	653
135	8100	0.47	0.24	1,932	0.15	1,227	647
150	9000	0.43	0.22	1,962	0.14	1,245	652
165	9900	0.4	0.20	2,005	0.13	1,273	661
180	10800	0.38	0.19	2,077	0.12	1,318	681
195	11700	0.37	0.19	2,189	0.12	1,389	715
210	12600	0.36	0.18	2,292	0.11	1,455	746
225	13500	0.34	0.17	2,318	0.11	1,471	749
240	14400	0.33	0.17	2,399	0.11	1,523	772
300	18000	0.29	0.15	2,631	0.09	1,670	831
360	21600	0.25	0.13	2,720	0.08	1,726	838
365	21900	0.25	0.13	2,757	0.08	1,750	849
370	22200	0.25	0.13	2,795	0.08	1,774	861
1080	64800	0.14	0.07	4,555	0.04	2,891	1,197
1440	86400	0.11	0.06	4,770	0.04	3,028	1,120

GFA Bed Variables:

Length =	321.00	ft
Avg Width =	10.78	ft
Depth =	6.00	in
Side Slopes =	3	:1
Free Board =	2.00	in

Required Treatment Volume:

1,661 cf

Resulting Dimensions at Operating Level:

1,980 cf

14,812 gal

324.00	ft	Bed Area 3,4					
13.78	ft	Top Area 4,465					
Resulting To	p Dimensio	ns (including fre	e				
board):							
325.00	ft	Height	8.00	in			
14.78	ft	Top Area 4,804					
Resulting Vo	lume:	Trench L	0				

Trench W

Trench A

0.00

Grassy Filtration Area 1a

	25 Vaa	u Ctouss				Operating
Pre-Developed Flow	Rate (cfs)		0.20	(flow rat	e based on 10-min time of con	centration)
Time of Concentrati	on		10	min		
AxC=			0.09			
Composite Runoff C	oefficient		0.30			
Sub Basin Area			0.30	acres		
Pre-Developed:					Double Barell (cfs) =	1.00
Time of Concentrati	on		5.00	min	Single Barell (cfs) =	0.30
AxC=			0.14		Drywell Capacities	
Composite Runoff C	oefficient		0.47			
Area			0.30	acres	First 1/2-Inch Runoff =	467
Post Developed					Treatment Storage (cf)	105.2
Orifice Outflow			0.00	cfs	Outlet Area (sf) =	0.50
Wier Outflow			0.00	cfs	Trans. Rate (cfs/sf)=	0.004
Check Dam Outflow	(Geotex + Drain Rock)		0.002	cfs	Fabric Transmissivity	
Bed of GIA Outflow			0.00	cfs	GIA Bed Area (sf) =	0
Drywell Outflow			0.00	cfs	(in/hr)=	0.00
Design Storm Return	n Period		25	yr	Infiltration (max. 2 in/hr Infiltration Rate	1
DATE:	5/4/2021		62.0		1. (1)	
DATE:	F /4/2021					

Pre-Developed Flo	w Rate (crs)		0.20	(Jiow rate bu	isea on 10-iiii	n time oj col	ncentration)
		25-Year Storm					Operating
Time (min)	Time (sec)	Intensity (in/hr)	Qpost(cfs)	Vpost (cf)	Qpre(cfs)	Vpre(cf)	Storage (cf)
5	300	2.8	0.40	159	0.25	101	57
10	600	2.17	0.31	216	0.20	137	77
15	900	1.83	0.26	259	0.16	165	93
20	1200	1.65	0.23	304	0.15	193	108
25	1500	1.45	0.21	329	0.13	209	117
30	1800	1.27	0.18	342	0.11	218	121
35	2100	1.19	0.17	371	0.11	236	131
40	2400	1.11	0.16	393	0.10	250	138
45	2700	1.04	0.15	412	0.09	262	145
50	3000	0.96	0.14	421	0.09	268	148
55	3300	0.88	0.12	424	0.08	270	148
60	3600	0.8	0.11	419	0.07	267	146
65	3900	0.78	0.11	442	0.07	281	154
70	4200	0.75	0.11	456	0.07	291	158
75	4500	0.72	0.10	469	0.06	298	162
80	4800	0.7	0.10	485	0.06	309	168
85	5100	0.67	0.09	493	0.06	314	170
90	5400	0.65	0.09	506	0.06	322	174
95	5700	0.63	0.09	517	0.06	329	178
100	6000	0.61	0.09	527	0.05	335	181

105	6300	0.59	0.08	534	0.05	340	183
110	6600	0.57	0.08	540	0.05	344	185
115	6900	0.55	0.08	545	0.05	347	186
120	7200	0.53	0.07	548	0.05	349	186
125	7500	0.51	0.07	549	0.05	349	186
130	7800	0.49	0.07	548	0.04	349	185
135	8100	0.47	0.07	545	0.04	347	184
150	9000	0.43	0.06	554	0.04	352	185
165	9900	0.4	0.06	566	0.04	360	188
180	10800	0.38	0.05	586	0.03	373	194
195	11700	0.37	0.05	618	0.03	393	203
210	12600	0.36	0.05	647	0.03	412	212
225	13500	0.34	0.05	654	0.03	416	214
240	14400	0.33	0.05	677	0.03	431	220
300	18000	0.29	0.04	743	0.03	473	238
360	21600	0.25	0.04	768	0.02	489	240
365	21900	0.25	0.04	778	0.02	495	243
370	22200	0.25	0.04	789	0.02	502	247
1080	64800	0.14	0.02	1,286	0.01	818	351
1440	86400	0.11	0.02	1,346	0.01	857	334

GFA Bed Variables:

Length =	264.00	ft
Avg Width =	3.00	ft
Depth =	6.00	in
Side Slopes =	3	:1
Free Board =	2.00	in

Required Treatment Volume:

467 cf

Resulting Dimensions at Operating Level:

597 cf

4,468 gal

267.00	ft	Bed Area	792	sf
6.00	ft	Top Area	1,602	sf
Resulting To	p Dimens	ions (including fr	ree	
board):				
268.00	ft	Height	8.00	in
7.00	ft	Top Area	1,876	sf
Resulting Vo	lume:	Trench L	0	

Trench W

Trench A

0.00

Grassy Filtration Area 1b

DATE: 5/4/2021			
Design Storm Return Period	25	yr	Infiltration (max. 2 in/hr)
			Infiltration Rate
Drywell Outflow	0.00	cfs	(in/hr)= 0.00
Bed of GIA Outflow	0.00	cfs	GIA Bed Area (sf) = 0
Check Dam Outflow (Geotex + Drain Rock)	0.002	cfs	Fabric Transmissivity
Wier Outflow	0.00	cfs	Trans. Rate (cfs/sf)= 0.004
Orifice Outflow	0.00	cfs	Outlet Area (sf) = 0.50
			Treatment Storage
Post Developed			(cf)
Area	0.18	acres	First 1/2-Inch Runoff = 296
Composite Runoff Coefficient	0.48		
AxC=	0.09		Drywell Capacities
Time of Concentration	5.00	min	Single Barell (cfs) = 0.30
Pre-Developed:			Double Barell (cfs) = 1.00
Sub Basin Area	0.18	acres	
Composite Runoff Coefficient	0.30		
AxC=	0.05		
Time of Concentration	10	min	
Pre-Developed Flow Rate (cfs)	0.12	(flow rate b	pased on 10-min time of concentration)

rie-beveloped i lo	W Nate (CIS)		0.12	GIOW Tate De	ase a on 10 mi	ii tiille oj coi	icenti ationy
		25-Year Storm					Operating
Time (min)	Time (sec)	Intensity (in/hr)	Qpost(cfs)	Vpost (cf)	Qpre(cfs)	Vpre(cf)	Storage (cf)
5	300	2.8	0.24	98	0.15	61	36
10	600	2.17	0.19	132	0.12	82	49
15	900	1.83	0.16	159	0.10	99	58
20	1200	1.65	0.14	186	0.09	116	68
25	1500	1.45	0.13	201	0.08	126	73
30	1800	1.27	0.11	209	0.07	131	76
35	2100	1.19	0.10	227	0.06	142	82
40	2400	1.11	0.10	241	0.06	150	86
45	2700	1.04	0.09	253	0.06	158	90
50	3000	0.96	0.08	258	0.05	161	92
55	3300	0.88	0.08	259	0.05	162	92
60	3600	0.8	0.07	257	0.04	160	90
65	3900	0.78	0.07	271	0.04	169	95
70	4200	0.75	0.06	280	0.04	174	98
75	4500	0.72	0.06	287	0.04	179	100
80	4800	0.7	0.06	297	0.04	186	103
85	5100	0.67	0.06	302	0.04	188	104
90	5400	0.65	0.06	310	0.04	193	107
95	5700	0.63	0.05	317	0.03	198	109
100	6000	0.61	0.05	323	0.03	201	111

105	6300	0.59	0.05	327	0.03	204	112
110	6600	0.57	0.05	331	0.03	207	113
115	6900	0.55	0.05	334	0.03	208	113
120	7200	0.53	0.05	335	0.03	209	113
125	7500	0.51	0.04	336	0.03	210	113
130	7800	0.49	0.04	336	0.03	209	112
135	8100	0.47	0.04	334	0.03	208	111
150	9000	0.43	0.04	339	0.02	212	111
165	9900	0.4	0.03	347	0.02	216	113
180	10800	0.38	0.03	359	0.02	224	116
195	11700	0.37	0.03	378	0.02	236	121
210	12600	0.36	0.03	396	0.02	247	126
225	13500	0.34	0.03	401	0.02	250	126
240	14400	0.33	0.03	415	0.02	259	130
300	18000	0.29	0.03	455	0.02	284	139
360	21600	0.25	0.02	470	0.01	293	138
365	21900	0.25	0.02	477	0.01	297	140
370	22200	0.25	0.02	483	0.01	301	142
1080	64800	0.14	0.01	787	0.01	491	180
1440	86400	0.11	0.01	825	0.01	514	155

GFA Bed Variables:

Length =	46.00	ft
Avg Width =	11.00	ft
Depth =	6.00	in
Side Slopes =	3	:1
Free Board =	2.00	in

Required Treatment Volume:

296 cf

Resulting Dimensions at Operating Level:

297 cf

2,221 gal

		-		
49.00	ft	Bed Area	506	sf
14.00	14.00 ft Top Area			
Resulting To				
board):				
50.00 ft 15.00 ft		Height	8.00	in
		Top Area	750	sf
Resulting Vo	lume:	Trench L	0	

Trench W

Trench A

0

0.00

Grassy Filtration Area 2a

DATE:	5/4/2021					
Design Storm Return	Period		25	yr	Infiltration (max. 2 in/he Infiltration Rate	r)
Drywell Outflow			0.00	cfs	(in/hr)=	0.00
Bed of GIA Outflow			0.00	cfs	GIA Bed Area (sf) =	0
Check Dam Outflow	(Geotex + Drain Rock)		0.002	cfs	Fabric Transmissivity	601
Wier Outflow			0.00	cfs	Trans. Rate (cfs/sf)=	0.004
Orifice Outflow			0.00	cfs	Outlet Area (sf) =	0.50
Post Developed					Treatment Storage (cf)	
Area			0.28	acres	First 1/2-Inch Runoff =	434
Composite Runoff Co	efficient		0.47		291.5	
AxC=			0.13		Drywell Capacities	
Time of Concentratio	n		5.00	min	Single Barell (cfs) =	0.30
Pre-Developed:			8000		Double Barell (cfs) =	1.00
Sub Basin Area			0.28	acres		
Composite Runoff Co	efficient		0.30			
AxC=			0.08			
Time of Concentratio	n		10	min		
Pre-Developed Flow	Rate (cfs)	ifa	0.18	(flow rate	based on 10-min time of cor	centration)
	25-Ve2i	Storm	70 f			Operating

Time (sec)	25-Year Storm Intensity (in/hr)	Omost/ofs)				Operating
154 September 140	Intensity (in/hr)	Onactical				
300		Qpost(cfs)	Vpost (cf)	Qpre(cfs)	Vpre(cf)	Storage (cf)
300	2.8	0.37	149	0.24	95	53
600	2.17	0.29	202	0.18	129	72
900	1.83	0.24	243	0.16	155	86
1200	1.65	0.22	285	0.14	182	101
1500	1.45	0.19	308	0.12	197	108
1800	1.27	0.17	320	0.11	205	112
2100	1.19	0.16	347	0.10	222	122
2400	1.11	0.15	368	0.09	235	129
2700	1.04	0.14	386	0.09	247	135
3000	0.96	0.13	395	0.08	252	137
3300	0.88	0.12	397	0.07	254	137
3600	0.8	0.11	393	0.07	251	135
3900	0.78	0.10	414	0.07	264	142
4200	0.75	0.10	428	0.06	273	147
4500	0.72	0.10	439	0.06	281	150
	900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200	300 2.8 600 2.17 900 1.83 1200 1.65 1500 1.45 1800 1.27 2100 1.19 2400 1.11 2700 1.04 3000 0.96 3300 0.88 3600 0.8 3900 0.78 4200 0.75	300 2.8 0.37 600 2.17 0.29 900 1.83 0.24 1200 1.65 0.22 1500 1.45 0.19 1800 1.27 0.17 2100 1.19 0.16 2400 1.11 0.15 2700 1.04 0.14 3000 0.96 0.13 3300 0.88 0.12 3600 0.8 0.11 3900 0.78 0.10 4200 0.75 0.10	300 2.8 0.37 149 600 2.17 0.29 202 900 1.83 0.24 243 1200 1.65 0.22 285 1500 1.45 0.19 308 1800 1.27 0.17 320 2100 1.19 0.16 347 2400 1.11 0.15 368 2700 1.04 0.14 386 3000 0.96 0.13 395 3300 0.88 0.12 397 3600 0.8 0.11 393 3900 0.78 0.10 414 4200 0.75 0.10 428	300 2.8 0.37 149 0.24 600 2.17 0.29 202 0.18 900 1.83 0.24 243 0.16 1200 1.65 0.22 285 0.14 1500 1.45 0.19 308 0.12 1800 1.27 0.17 320 0.11 2100 1.19 0.16 347 0.10 2400 1.11 0.15 368 0.09 2700 1.04 0.14 386 0.09 3000 0.96 0.13 395 0.08 3300 0.88 0.12 397 0.07 3600 0.8 0.11 393 0.07 3900 0.78 0.10 414 0.07 4200 0.75 0.10 428 0.06	300 2.8 0.37 149 0.24 95 600 2.17 0.29 202 0.18 129 900 1.83 0.24 243 0.16 155 1200 1.65 0.22 285 0.14 182 1500 1.45 0.19 308 0.12 197 1800 1.27 0.17 320 0.11 205 2100 1.19 0.16 347 0.10 222 2400 1.11 0.15 368 0.09 235 2700 1.04 0.14 386 0.09 247 3000 0.96 0.13 395 0.08 252 3300 0.88 0.12 397 0.07 254 3600 0.8 0.11 393 0.07 251 3900 0.78 0.10 414 0.07 264 4200 0.75 0.10 428 0.06 273

80	4800	0.7	0.09	455	0.06	291	156	
85	5100	0.67	0.09	462	0.06	295	158	
90	5400	0.65	0.09	474	0.06	303	161	
95	5700	0.63	0.08	485	0.05	310	165	
100	6000	0.61	0.08	494	0.05	315	167	
105	6300	0.59	0.08	501	0.05	320	169	
110	6600	0.57	0.08	506	0.05	324	171	
115	6900	0.55	0.07	511	0.05	326	172	
120	7200	0.53	0.07	513	0.04	328	172	
125	7500	0.51	0.07	514	0.04	328	172	
130	7800	0.49	0.06	513	0.04	328	171	
135	8100	0.47	0.06	511	0.04	327	170	
150	9000	0.43	0.06	519	0.04	332	171	
165	9900	0.4	0.05	530	0.03	339	174	
180	10800	0.38	0.05	549	0.03	351	179	
195	11700	0.37	0.05	579	0.03	370	188	
210	12600	0.36	0.05	606	0.03	387	196	
225	13500	0.34	0.05	613	0.03	392	197	
240	14400	0.33	0.04	634	0.03	405	203	
300	18000	0.29	0.04	696	0.02	445	219	
360	21600	0.25	0.03	719	0.02	460	221	
365	21900	0.25	0.03	729	0.02	466	224	
370	22200	0.25	0.03	739	0.02	472	227	
1080	64800	0.14	0.02	1,205	0.01	770	318	
1440	86400	0.11	0.01	1,262	0.01	806	300	

	GFA	Bed	Var	iab	les:
--	-----	-----	-----	-----	------

Length =	238.00	ft
Avg Width =	3.00	ft
Depth =	6.00	in
Side Slopes =	3	:1
Free Board =	2.00	in

Required Treatment Volume:

434 cf

Resulting Dimensions at Operating Level:

241.00 ft

6.00	ft	Top Area	1,446	sf		
Resulting Top Dimensions (including free						
board):						
242.00	ft	Height	8.00	in		
7.00	ft	Top Area	1,694	sf		
Resulting Volume:		Trench L	0			
539 cf		Trench W	0			
4,031	gal	Trench A	0.00			

Bed Area

714 sf

Grassy Filtration Area 2b

25-Vear Storm				Operating
Pre-Developed Flow Rate (cfs)	0.19	(flow rate	based on 10-min time of con	centration)
Time of Concentration	10	min		
AxC=	0.09			
Composite Runoff Coefficient	0.30			
Sub Basin Area	0.30	acres		
Pre-Developed:			Double Barell (cfs) =	1.00
Time of Concentration	5.00	min	Single Barell (cfs) =	0.30
AxC=	0.14	norm.	Drywell Capacities	
Composite Runoff Coefficient	0.47			
Area	0.30	acres	First 1/2-Inch Runoff =	465
Post Developed			(cf)	
			Treatment Storage	
Orifice Outflow	0.00	cfs	Outlet Area (sf) =	0.50
Wier Outflow	0.00	cfs	Trans. Rate (cfs/sf)=	0.004
Check Dam Outflow (Geotex + Drain Rock)	0.002	cfs	Fabric Transmissivity	391
Bed of GIA Outflow	0.00	cfs	GIA Bed Area (sf) =	0
Drywell Outflow	0.00	cfs	(in/hr)=	0.00
			Infiltration Rate	
Design Storm Return Period	25	yr	Infiltration (max. 2 in/hr	·)
DATE: 5/4/2021				

		25-Year Storm	30 0	77.1			Operating
Time (min)	Time (sec)	Intensity (in/hr)	Qpost(cfs)	Vpost (cf)	Qpre(cfs)	Vpre(cf)	Storage (cf)
5	300	2.8	0.39	158	0.25	101	57
10	600	2.17	0.30	214	0.19	136	77
15	900	1.83	0.26	258	0.16	164	92
20	1200	1.65	0.23	302	0.15	192	108
25	1500	1.45	0.20	326	0.13	208	116
30	1800	1.27	0.18	339	0.11	216	120
35	2100	1.19	0.17	368	0.11	234	130
40	2400	1.11	0.16	390	0.10	248	138
45	2700	1.04	0.15	410	0.09	260	144
50	3000	0.96	0.13	418	0.09	266	147
55	3300	0.88	0.12	421	0.08	267	147
60	3600	0.8	0.11	416	0.07	265	145
65	3900	0.78	0.11	439	0.07	279	153
70	4200	0.75	0.11	453	0.07	288	158
75	4500	0.72	0.10	466	0.06	296	161

80	4800	0.7	0.10	482	0.06	307	167	
85	5100	0.67	0.09	490	0.06	311	169	
90	5400	0.65	0.09	503	0.06	320	173	
95	5700	0.63	0.09	514	0.06	327	177	
100	6000	0.61	0.09	523	0.05	333	180	
105	6300	0.59	0.08	531	0.05	337	182	
110	6600	0.57	0.08	537	0.05	341	184	
115	6900	0.55	0.08	541	0.05	344	185	
120	7200	0.53	0.07	544	0.05	346	185	
125	7500	0.51	0.07	545	0.05	346	185	
130	7800	0.49	0.07	544	0.04	346	184	
135	8100	0.47	0.07	542	0.04	344	183	
150	9000	0.43	0.06	550	0.04	350	184	
165	9900	0.4	0.06	562	0.04	357	187	
180	10800	0.38	0.05	582	0.03	370	193	
195	11700	0.37	0.05	614	0.03	390	202	
210	12600	0.36	0.05	643	0.03	409	211	
225	13500	0.34	0.05	650	0.03	413	212	
240	14400	0.33	0.05	673	0.03	428	219	
300	18000	0.29	0.04	738	0.03	469	236	
360	21600	0.25	0.04	762	0.02	485	239	
365	21900	0.25	0.04	773	0.02	491	242	
370	22200	0.25	0.04	784	0.02	498	245	
1080	64800	0.14	0.02	1,277	0.01	812	348	
1440	86400	0.11	0.02	1,337	0.01	850	332	

GFA	Bed	Variables:
OI A	DCu	Variables.

Length =	46.00	ft
Avg Width =	19.00	ft
Depth =	6.00	in
Side Slopes =	3	:1
Free Board =	2.00	in

Required Treatment Volume:

465 cf

Resulting Dimensions at Operating Level:

49.00 ft

22.00	ft	Top Area	1,078	sf		
Resulting Top Dimensions (including free						
board):						
50.00	ft	Height	8.00	in		
23.00	ft	Top Area	1,150	sf		
Resulting Volume:		Trench L	0			
487	cf	Trench W	0			
3,642	gal	Trench A	0.00			

Bed Area 874 sf