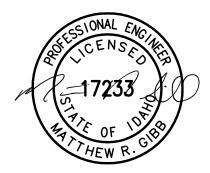


Conceptual Storm Water Management Report Special Use Permit Submittal

Sand Creek Ridge Development


US 95 & Bonner Mall Way Ponderay, Idaho 83852

Prepared for: Sand Creek Crossing LLC SOK Design Studio

Prepared by:

This report has been prepared by the staff of DCI Engineers under the direction of the undersigned professional engineer whose stamp and signature appears hereon.

DCI Job No.: #21042-0088 Date: January 7, 2022

The methods, descriptions, and design calculations shown in this design report conform to the City of Ponderay design standards, unless noted otherwise, and are under the jurisdiction of the City of Ponderay relative to the collection, treatment, and disposal of stormwater runoff.


Table of Contents

Section	<u>1</u>	<u>Page</u>
1.0	Project Overview	1
2.0	Project Location	1
3.0	Site and Soil Characteristics	1
4.0	Erosion and Sedimentation Control	1
5.0	Storm Water System Design	1-2
6.0	Preliminary Storm Water System Design Calculations	2

List of Appendices

Appendix I	Project Location Map
Appendix II	Geotechnical Report
Appendix III	Drainage Area Basin Map
Appendix IV	Pre-Developed Storm Water Calcu

Appendix IV Pre-Developed Storm Water Calculations
Appendix V Post-Developed Storm Water Calculations

Sand Creek Ridge Development Ponderay, Idaho

Conceptual Storm Water Design Report

1.0 Project Overview

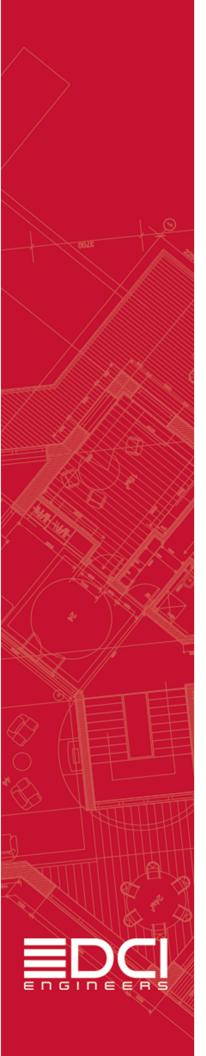
The proposed project development includes the construction of four multi-story, mixed-use buildings, three of which will be constructed on a below-grade parking structure. The buildings will include a mix of residential condominiums, retail, and office space uses. The buildings will vary between two and four stories, and the parking structure will have one level of below-grade parking and surface parking on the top deck. The lower parking level will be accessed from the "daylighted" northern side of the structure.

2.0 Project Location

The project property consists of 2 separate lots addressed as 476422 and 476516 US-95 in Ponderay, Idaho (Bonner County Tax Parcel Nos. RPP00000107502A and RPP00000107401A). The properties are located between Bonner Mall Way and Tibbets Lane (north and south) and between Sand Creek and US-95 (west and east). The properties are 4.65 and 5.81 acres in area (10.46 acres in total).

3.0 Site and Soil Characteristics

The project properties are accessed from US-95 which runs along, and adjacent to, the east side of the properties. The southern lot is flat in grade from the highway to the west for approximately 120 feet where it then slopes severely down towards Sand Creek (elevation drop of approximately 40 feet). The northern lot is flat in grade from the highway to the west for approximately 70 feet where it then slopes severely down towards Sand Creek.


The soils present on the project properties are primarily silt and clay. The draft geotechnical investigation report for the project (attached in Appendix II) for the project identifies uncontrolled fill located throughout the site ranging from 5 feet to 20 feet in depth. Deep foundation systems are recommended for the proposed buildings in the development. Storm water infiltration is not feasible on the site.

4.0 Erosion & Sedimentation Control

Erosion and sedimentation control implementation and management will be a critical component of the project development, especially during construction. The existing soils present on the site, steep slopes, and proximity to Sand Creek will require the contractor to be vigilant and proactive in implementing and maintaining Best Management Practices (BMPs) on the site to prevent erosion and manage construction storm water. A Construction Storm Water General Permit (CSWGP) will be obtained for the project (administered by the Idaho Department of Environmental Quality) and a Storm Water Pollution Prevention Plan (SWPPP) will be developed and adhered to by the contractor during construction. All BMPs will be installed prior to commencement of construction. All temporary BMPs will remain in place and maintained until the storm water system is complete and vegetation is established on the development.

5.0 Storm Water System Design

This storm water report has utilized the rational method to design on-site facilities. This method calculates the pre- and post-development runoff based on anticipated lot coverage of buildings, parking and landscape. A storm drainage system (grassed detention area) will be installed to accommodate the storm water runoff generated by the impervious areas. Off-site discharges to Sand Creek west of the property will be restricted to the pre-development flow rates using appropriately sized orifices on the discharge pipes from the swale catch basins.

As stated above, the geotechnical report identifies that storm water infiltration is not feasible on the project property. City of Ponderay regulations state that post-developed off-site storm water discharge may not exceed the 25-year pre-developed peak flow rate. In addition, the first 1/2 inch of all storm water runoff generated from impervious surfaces in the development (pavements and building roofs) must be treated prior to discharge from the site. DCI expects to implement storm water treatment swales/ponds around the perimeter of the project development that will function as both storm water treatment and detention facilities. The ponds will be designed to treat the first 1/2 inch of runoff and detain storm water to limit the off-site discharge to the pre-developed 25-yr peak flow rate. We anticipate that the storm water ponds will likely discharge to Sand Creek due to existing and anticipated post-development site elevations. Rip-rap channels will be installed at curb inlet and pipe discharge locations to prevent erosion and slopes. Please see the Conceptual Storm Water Plan accompanying this application for estimated storm water facility locations and sizing relative to the site development.

Foundation drainage systems are recommended by the project's geotechnical engineer. Foundation drainage systems should be installed completely around the perimeter of all project structures and will be directed to drain to daylight away from the structures.

6.0 Preliminary Storm Water System Design Calculations

The Rational Method with a 25-year return period was used for calculating the pre- and post-development peak flow rates.

25-yr Intensity= 2.90 in/hr Landscaping C= 0.30 Gravel Area C= 0.80 Impervious Area C= 0.90 Area= 1.42 acres

Pre-Development Flow Rate for the Developed Impervious Areas= (0.3 * 2.90 in/hr * 1.10 acres) + (0.8 * 2.90 in/hr * 0.32 acres) = 1.70 cfs

Post-Development Flow rate for the Developed Impervious Area= 0.9 * 2.90 in/hr * 1.42 acres = 3.70 cfs

*Off-Site Discharge from the Developed Impervious Areas will be Restricted to 1.70 cfs maximum from the impervious areas developed on the site

Storm Water Discharge Calculations for each individual Basin Area are included in Appendices IV and V.

Storm Water Treatment Volume Required for First 1/2" of Runoff:

65,790 sf of development impervious area * 0.5 in/12 in/ft = 2,740 cu ft treatment volume required

Approximately **5,480 sq ft** of swale treatment area is required for the development's impervious area.

September 3, 2021

Sand Creek Crossing, LLC c/o SOK Design Studio 534 Pine Street Sandpoint, Idaho 83864

Attention: Mr. Paul Delay

RE: DRAFT Geotechnical Evaluation

Ponderay Mixed-Use Lots

Parcels #RPP00000107502A and RPP00000107401A

Ponderay, Idaho

ALLWEST Project Nos. 120-311G

Mr. Delay,

ALLWEST has completed the authorized geotechnical evaluation for the proposed mixed-use buildings located on Parcels #RPP00000107502A and RPP00000107401A in Ponderay, Idaho. The purpose of this evaluation was to characterize the soil and geologic conditions on the property. The attached report presents the results of the field evaluation and our recommendations to assist with design and construction of the proposed project.

We appreciate the opportunity to work with you on this project. If you have any questions or need additional information, please do not hesitate to call us at (208) 762-4721.

Sincerely, **ALLWEST**

Adam Richter, G.I.T.

Project Geologist

Samuel P. Sommers, P.E.Engineering Services Manager

690 W. Capstone Ct., Hayden, ID 83835 Phone: 208.762.4721 • Fax: 208.762.0942

DRAFT GEOTECHNICAL EVALUATION PONDERAY MIXED-USE LOTS PARCELS #RPP00000107502A AND RPP00000107401A PONDERAY, IDAHO ALLWEST PROJECT NO. 120-311G

September 3, 2021

Prepared for:

Sand Creek Crossing, LLC c/o SOK Design Studio 534 Pine Street Sandpoint, Idaho 83864

Prepared by:

ALLWEST 690 West Capstone Court Hayden, Idaho 83835

WWW.ALLWESTTESTING.COM

TABLE OF CONTENTS

DRAFT Geotechnical Evaluation Ponderay Mixed-Use Lots

Parcels #RPP00000107502A and RPP00000107401A Ponderay, Idaho

	Page				
EXEC	UTIVE SUMMARY1				
1.0	PROJECT DESCRIPTION1				
2.0	EVALUATION PROCEDURES1				
3.0	SITE CONDITIONS1				
4.0	SUBSURFACE CONDITIONS1				
4.1	Published Geologic Information				
4.2	Subsurface Investigation2				
4.3	Groundwater Conditions				
5.0	LABORATORY TESTING3				
6.0	CONCLUSIONS AND RECOMMENDATIONS3				
6.1	Site Preparation4				
6.2	Excavation4				
6.3	Materials5				
6.4	Fill Placement and Compaction5				
6.5	Wet Weather Construction6				
6.6	Cold Weather Construction6				
6.7	Foundation Recommendations 6				
6.8	Concrete Slabs-on-Grade6				
6.9	Lateral Earth Pressures7				
6.10					
6.1	1 Seismicity7				
6.12	2 Flexible (Hot Mix Asphalt) Pavement				
6.13	3 Stormwater and Drainage				
7.0	ADDITIONAL RECOMMENDED SERVICES11				
8.0	EVALUATION LIMITATIONS11				
App	pendix A – Site and Exploration Plan				
App	Appendix B – Test Pit Logs, Boring Logs, Unified Soil Classification System				
	pendix C – Laboratory Test Results				
App	pendix D – Slope Stability Analyses				

EXECUTIVE SUMMARY

ALLWEST has completed the authorized geotechnical evaluation for the Ponderay Mixed-Use Lots located at Parcels #RPP00000107502A and RPP00000107401A in Ponderay, Idaho. The purpose of the evaluation was to assess the subsurface conditions on the property with respect to the proposed design and construction. This report details the results of the field evaluation and laboratory testing and presents our recommendations to assist the design and construction of the proposed project. The following geotechnical considerations were identified:

- Based on analyses of bearing capacity, slope stability, and our understanding of the proposed construction and therefore the anticipated loading conditions, it does not appear a shallow foundation system is feasible. Therefore, we recommend the buildings be supported on a deep foundation system, or be relocated further from the existing slope.
- The uncontrolled fill and native soils are unsuitable for re-use as structural fill.
- For light-duty pavement: A pavement section of 2½-inches asphaltic concrete over a minimum of 4-inches crushed aggregate base over 12 inches of structural fill is recommended.
- For heavy-duty pavement: A pavement section of 3-inches asphaltic concrete over a minimum of 4-inches of crushed aggregate base over 12 inches of structural fill is recommended.
- We recommend a permanent foundation drainage system be designed and constructed around the perimeter of the structures.

Our services were provided in general accordance with our proposals 120-311P dated September 16, 2020, and 120-345P dated May 26, 2021. Close monitoring of the construction operations discussed herein will be critical in achieving the design subgrade support. If we are not retained to provide required construction observation and materials testing services, we cannot be responsible for soil engineering related construction errors or omissions. This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **8.0 EVALUATION LIMITATIONS** should be read for an understanding of the report limitations.

DRAFT Geotechnical Evaluation Ponderay Mixed-Use Lots Parcels #RPP00000107502A and RPP00000107401A Ponderay, Idaho

1.0 PROJECT DESCRIPTION

We understand the proposed project will consist of constructing multiple 4-story mixed-use buildings. We estimate the structure will have continuous footing loads of up to 3 kips/lineal foot with column loads up to 250 kips. An asphalt parking lot and miscellaneous landscaping improvements may also be constructed. If the proposed design or loads vary from those stated, we should be notified to review our recommendations.

2.0 EVALUATION PROCEDURES

To complete this evaluation, we reviewed soil and geologic literature for the project area. We evaluated the subsurface conditions at the site by advancing eight geotechnical borings supplemented by excavating four test pits throughout the project site. The approximate locations of the borings and test pits are shown on Figure A-1, Site and Exploration Plan included in Appendix A. Information obtained from the field evaluation, laboratory testing, and geotechnical analyses was utilized to develop the recommendations presented in this report.

3.0 SITE CONDITIONS

The project site is comprised of two parcels approximately 10.5 acres in total size. The eastern area of the properties is relatively flat, then slopes steeply down to the east to Sand Creek. The western area of the site sits approximately 40 to 50 feet lower in elevation, adjacent to Sand Creek. The site is bordered by U.S. Highway 95 to the east and Sand Creek to the west. A developed retail property exists to the north and a developed office structure borders the south side of the property. The ground coverage within the proposed development area consists of mostly grass and small shrubs. The site is currently partially developed with a gravel parking lot and an operational shed and trailer dealership.

4.0 SUBSURFACE CONDITIONS

4.1 Published Geologic Information

The geologic conditions on the property are mapped on the Geologic Map of the Sandpoint Quadrangle, Bonner County, Idaho, by S. Lewis, F. Burmester, M.

Breckenridge, E. Box, and D. McFadden, 2006. The project site is mapped as glaciolacustrine deposits (Pleistocene to Holocene), which is described as massive to finely laminated clay, silt, and sand deposited in ice marginal and post glacial lakes in the Purcell Trench.

The USDA Natural Resources Conservation Service (NRCS) has mapped the soils on and around the property predominately as the Mission Silt Loam. The Mission silt loam is described as volcanic ash and loess over silty glaciolacustrine deposits. The soil profile is described as silt, silty clay and very fine sandy loam. The permeability is slow and run-off is slow. A seasonal high water table is reported at a depth of 12 inches from February through May.

4.2 Subsurface Investigation

Four test pits were excavated at the southern parcel on September 23, 2020, followed by five geotechnical borings drilled at the site on October 1 and 2, 2020. Three additional borings were drilled on the northern parcel on June 9, 2021. The test pits were excavated with a John Deere 180LC with a 46-inch smooth excavation bucket. The borings were drilled using a trailer-mounted drill rig and 6-inch hollow-stem augurs. The drilling and test pit excavations were performed on the eastern portion of both parcels, adjacent to Highway 95. The approximate locations of the borings and test pits are shown on Figure A-1, Site and Exploration Plan in Appendix A. The soil conditions observed in the borings and test pits were visually described and classified in general accordance with ASTM D2487 and D2488 and the subsurface profiles were logged.

Detailed descriptions of the soil observed in the borings and test pits are presented on the Boring Logs and Test Pit Logs in Appendix B of this report. The descriptive soil terms used on the boring logs, test pit logs, and in this report, can be referenced by the Unified Soil Classification System (USCS). A summary of the USCS is included in Appendix B. The subsurface conditions may vary between boring and test pit locations. Such changes in conditions would not be apparent until construction.

The near surface geologic profile appears to consist of silt and clay units overlying silty sands and poorly-graded sands overlying clay. Uncontrolled fill was encountered in borings B-2 and B-3, and in test pits TP-1 and TP-4. Descriptions of the soil types observed follow:

<u>Uncontrolled fill</u> – Uncontrolled fill was encountered in borings B-2 and B-3, and in test pits TP-1 and TP-4. The depth of fill varied from 5 to 6 feet in boring B-2 and test pits TP-1 and TP-4, to 20 feet in boring B-3. It consisted of silt and clay soils with a variable amount of construction and organic debris. The color ranged from gray-green to black to brown and the unit was damp to moist and medium stiff to stiff.

DRAFT Geotechnical Evaluation Ponderay Mixed-Use Lots Ponderay, Idaho

<u>Silt / Sandy Silt — Silt and sandy silt units were encountered in most borings and test pits to depths of up to 10 feet. These units appeared light brown to brown, damp, and medium stiff to very stiff.</u>

<u>Lean Clay</u> – The silt and sandy silt soils were underlain by a unit of lean clay. This unit appeared light brown, moist, and medium stiff to stiff and extended to a depth of 15 feet.

<u>Silty Sand / Poorly-graded Sand</u> – Units of silty sand and poorly-graded sand were encountered underlying the lean clay. These units were gray to brown, moist to wet, and medium dense to dense.

<u>Lean Clay</u> – The silty sand and poorly-graded sand units were underlain by another unit of lean clay. This unit appeared gray, moist to wet, and soft to medium stiff to stiff. This unit extended beyond the depth of exploration of 51 ½ feet.

4.3 Groundwater Conditions

Groundwater was encountered while drilling to depths between 24 and 26 feet in borings B-1 through B-5. We did not observe surface water within the proposed development area on the property during our evaluation. Changes in precipitation, irrigation, construction, or other factors may impact depth to groundwater and the surface water flow on the property and therefore, conditions may be different during construction.

5.0 LABORATORY TESTING

Laboratory testing was performed to supplement field classifications and to assess some of the soil engineering parameters. The laboratory testing included particle size distribution/gradation tests (ASTM D6913), Liquid Limit and Plastic Limit tests (ASTM D4318), and a Direct Shear test (AASHTO T236). The laboratory test results are in Appendix C of this report and presented on the boring logs and test pit logs in Appendix B. The laboratory testing was performed by ALLWEST.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are presented to assist the planning and design of the proposed development. The recommendations are based on our understanding of the proposed construction, the conditions observed in the test pits, and engineering analyses. If the construction scope changes, or if conditions are encountered during construction which are different than those described in this report, we should be notified so we can review our recommendations and provide revisions, if necessary.

6.1 Site Preparation

<u>Over-Excavation:</u> Once temporary erosion and sediment control (TESC) measures are installed, we expect site preparation to continue with over-excavation of the uncontrolled fill.

<u>Subgrade Preparation</u>: Once over-excavation is complete, all areas that are at design subgrade elevation or areas that will receive new structural fill should be moisture conditioned to a moisture content within plus or minus two percent of the optimum moisture content for compaction. The subgrade should then be compacted to a firm and unyielding condition.

In the event the exposed subgrade becomes unstable, yielding, or unable to be compacted due to high moisture conditions or construction traffic, we recommend that the materials be removed to a sufficient depth in order to develop stable subgrade soils that can be compacted to the minimum recommended levels. The severity of construction problems will be dependent, in part, on the precautions that are taken by the contractor to protect the subgrade soils.

Once compacted, subgrades should be evaluated through either density testing or proof rolling with a loaded dump truck or heavy rubber-tired construction equipment weighing at least 20 tons, to assess the subgrade adequacy and to detect soft and/or yielding soils. In the event that compaction fails to meet the specified criteria, the upper 12 inches of subgrade should be scarified, and moisture conditioned as necessary to obtain at least 95 percent of the maximum laboratory dry density (per ASTM D1557). Those soils which are soft, yielding, or unable to be compacted to the specified criteria should be over-excavated and replaced with suitable material as recommended in the Structural Fill section of this report.

6.2 Excavation

Based on the conditions observed in our explorations, we anticipate excavation of the on-site soil can be achieved with typical excavation equipment. Temporary excavation slope stability is a function of many factors, including:

- The presence and abundance of groundwater;
- The type and density of the various soil strata;
- The depth of cut;
- Surcharge loadings adjacent to the excavation; and
- The length of time the excavation remains open.

It is exceedingly difficult under the variable circumstances to pre-establish a safe and "maintenance-free" temporary cut slope angle. Therefore, it is the responsibility of the contractor to maintain safe temporary slope configurations since the contractor is continuously at the job site, able to observe the nature and condition of the cut

Page 5

slopes, and able to monitor the subsurface materials and groundwater conditions Unsupported vertical slopes or cuts deeper than 4 feet are not recommended if worker access is necessary. The cuts should be adequately sloped, shored, or supported to prevent injury to personnel from local sloughing and spalling. The excavation should conform to applicable Federal, State, and Local regulations. Regarding trench wall support, the site soil is considered Type C soil according to OSHA guidelines and therefore should not exceed a 1.5H:1V temporary slope.

We recommend that all permanent cut or fill slopes constructed in native soils be designed at a 2H:1V (Horizontal:Vertical) inclination or flatter. All permanent cut and fill slopes should be adequately protected from erosion both temporarily and permanently.

6.3 **Materials**

The uncontrolled and native soils are unsuitable for re-use as structural fill. Select structural fill will need to be imported to the site.

Import materials should be well-graded granular soil, free of organics, debris, and other deleterious material and meet the following recommendations. Import materials should be approved by the Geotechnical Engineer prior to delivery to the site.

Fill Type	Recommendations		
Structural Fill	Maximum size ≤ 3 inches; Retained on ¾-inch sieve <30%		
	Passing No. 200 Sieve ≤ 10%; Non-plastic		
Utility Trench Backfill	Maximum size ≤ 2 inches;		
	Passing No. 200 Sieve ≤ 15%;		
	Non-plastic		

6.4 Fill Placement and Compaction

Fill should be placed in lift thicknesses which are appropriate for the compaction equipment used. Typically, eight-inch loose lifts are appropriate for typical rubber tire and steel drum compaction equipment. Lift thicknesses should be reduced to four inches for hand operated compaction equipment. Fill should be moisture conditioned to within two percentage points of the optimum moisture content prior to placement to facilitate compaction. Structural fill and utility trench backfill should be compacted to a minimum of 95 percent of the maximum dry density established by ASTM D1557 (modified Proctor).

6.5 Wet Weather Construction

Due to the climatic effects in this region during late fall, winter, and spring (generally wet conditions), we recommend construction (especially site grading) take place during the summer and early fall season, if possible. If construction occurs during or immediately after excessive precipitation, it may be necessary to over-excavate and replace wet subgrade soil which might otherwise be suitable.

We recommend earthwork for this site be scheduled for the drier seasons of the year. If construction is undertaken in wet periods of the year, it will be important to slope the ground surface to provide drainage away from construction.

6.6 Cold Weather Construction

If site grading and construction are anticipated during cold weather, we recommend good winter construction practices be observed. Snow and ice should be removed from excavated and fill areas prior to additional earthwork or construction. Footings, floor slabs or structural portions of the construction should not be placed on frozen ground; nor should the supporting soils for buildings be permitted to freeze during or after construction. Frozen soils should not be used as backfill or fill.

6.7 Foundation Recommendations

Based on analyses of slope stability, and our understanding of the proposed construction and therefore the anticipated loading conditions, we were unable to achieve a Factor of Safety (FOS) above 1.5. Given these results, it does not appear a shallow foundation system is feasible. Therefore, we recommend the buildings should be supported on a deep foundation system or be designed further way from the existing slope.

6.8 Concrete Slabs-on-Grade

Concrete slabs-on-grade should be underlain by at least 4 inches of crushed base course. The crushed base course below the slabs should be compacted to at least 95 percent of the maximum dry density established by modified Proctor (ASTM D1557). The slab subgrade should be prepared as previously recommended which includes over-excavation of the uncontrolled fill.

From a geotechnical perspective, a vapor barrier is not considered necessary beneath the slab-on-grade floor unless moisture sensitive floor coverings and/or adhesives are used. If a vapor barrier is used, we recommend using a 15-mil, puncture-resistant proprietary product such as Stego Wrap, or an approved equivalent that is classified as a Class A vapor barrier in accordance with ASTM E 1745. Overlap lengths and the appropriate tape used to seal the laps should be in accordance with the vapor retarder manufacturer's recommendations. To avoid

puncturing of the vapor barrier, a thin sand layer placed over the crushed gravel is recommended. When conditions warrant the use of a vapor retarder, the slab designer and slab contractor should refer to ACI 302 and ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder/barrier.

6.9 Lateral Earth Pressures

Below-grade building walls should be designed to resist lateral earth pressures. The lateral earth pressures for structural fill should be calculated using the following equivalent fluid pressures:

Condition	Equivalent Fluid Pressure Structural Fill (pcf)
At-rest	55
Active	35
Passive	350

The above values are for level backfill only and do not account for hydrostatic forces. Walls should be provided with adequate drainage so hydrostatic forces do not adversely affect the walls. We recommend placement of gravel behind walls and/or weep holes to assist with drainage and reduce the potential for the buildup of hydrostatic pressures. Walls that are braced in a manner that does not allow any rotational movement (rigid) (e.g. basement walls) should be designed using the given "at-rest" equivalent fluid pressure.

6.10 Slope Stability

Proposed construction activities include areas on or near the approximate 70 percent slope that borders the western bench of the site. This area is composed of uncontrolled fill and native silt, sand, and clay soils. These soils pose a potential risk of slope instability. We conducted slope stability analyses for Section A-A' (alignment shown on Figure A-1 in Appendix A). The analyses were completed via Rocscience Slide 7.0 Slope Stability software. The program utilized the Bishop Simplified Method to evaluate non-circular failure surfaces to estimate the minimum factor of safety (FOS) for the both the existing conditions and estimated developed conditions at the site. The model estimated a minimum FOS of 1.15 for the existing conditions, and a minimum FOS of 1.37 for the proposed conditions utilizing the Bishop method. The slope stability analyses are shown in Appendix D.

6.11 Seismicity

We anticipate the 2018 International Building Code (IBC) will be used as the basis for design of the proposed structures. The soil at the site can be characterized as Site Class D for seismic design.

The following seismic parameters were calculated using USGS U.S. Seismic Design Maps for use with the 2018 IBC. The latitude and longitude for the site were used to specify the location of the subject property. The following Site Class D seismic parameters may be used for design.

Latitude	Longitude	Spectral Ac	celerations	Site Coefficients		
(degrees)	(degrees)	Ss	S 1	Fa	Fv	
48.3000	-116.5479	0.332g	0.112g	1.534	2.376	

6.12 Flexible (Hot Mix Asphalt) Pavement SUBGRADE

We recommend that the moisture content and density of the top 12 inches of the subgrade be evaluated and that the pavement subgrades be proof-rolled within two days prior to commencement of actual paving operations. Areas not in compliance with the required ranges of moisture or density should be moisture conditioned and recompacted. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas where backfilled trenches are located. Areas where unsuitable conditions are located should be repaired by removing and replacing the materials with properly compacted structural fills. If a significant precipitation event occurs after the evaluation or if the surface becomes disturbed, the subgrade should be reviewed by qualified personnel immediately prior to paving. The subgrade should be in its finished form at the time of the final review.

DESIGN PARAMETERS

Design Parameter	Value
Assumed:	5%
Subgrade California Bearing Ratio (CBR)	370
Estimated:	
Equivalent Single Axle Loads (ESALs)	30,000 / 75,000
Light / Heavy Duty	
Assumed:	85%
Pavement reliability	
Assumed:	20-year
Pavement design life	

PAVEMENT SECTION

MINIMUM LIGHT-DUTY PAVEMENT SECTION (CARS ONLY)				
Layer Thickness (inches)				
Asphalt Surface	2.5			
Crushed Aggregate Base	4.0			
Structural Fill	12.0			
Total Pavement Section	18.5			

MINIMUM HEAVY-DUTY PAVEMENT SECTION				
Layer Thickness (inches				
Asphalt Surface Course	3.0			
Crushed Aggregate Base	4.0			
Structural Fill	12.0			
Total Pavement Section	19.0			

We also recommend a concrete apron in areas where you expect frequent truck loading, unloading, turning, starting, and stopping such as around loading docks and dumpster pads. Concrete aprons should be underlain by a minimum of 4 inches of crushed aggregate base.

MATERIALS

We recommend specifying crushed aggregate base meeting the requirements of the Idaho Standards for Public Works Construction (ISPWC) Section 802, Type I for crushed aggregate for base gradations. We recommend the asphalt concrete pavement meet the requirements of ITD Standard Specification 405 for plant mix asphalt concrete pavements.

We recommend the crushed aggregate base be compacted to a minimum of 95 percent of the maximum dry density established by ASTM D1557 (modified Proctor). We recommend the asphaltic concrete surface be compacted to minimum of 92 percent of the Rice density.

DRAINAGE

Pavements should be sloped to provide rapid drainage of surface water. Water allowed to pond on or adjacent to the pavements could saturate the subgrade and contribute to premature pavement deterioration. In addition, the pavement subgrade

should be graded to provide positive drainage within the crushed aggregate base section.

We recommend drainage be included at the bottom of the crushed aggregate base layer at the storm structures to aid in removing water that may enter this layer. Drainage could consist of small diameter weep holes excavated around the perimeter of the storm structures. The weep holes should be excavated at the elevation of the crushed aggregate base and soil interface. The excavation should be covered with crushed aggregate which is encompassed in Mirafi 140NL or approved equivalent which will aid in reducing fines from entering the storm system.

MAINTENANCE

The pavement sections provided in this report represent minimum recommended thicknesses. Therefore, preventive maintenance should be planned and provided for through an on-going pavement management program. Preventive maintenance activities are intended to slow the rate of pavement deterioration, and to preserve the pavement investment. Preventive maintenance consists of both localized maintenance (e.g., crack, and joint sealing and patching) and global maintenance (e.g., surface sealing). Preventive maintenance is usually the first priority when implementing a planned pavement maintenance program and provides the highest return on investment for pavements. Prior to implementing any maintenance, additional engineering observation is recommended to determine the type and extent of preventive maintenance. Even with periodic maintenance, some movements and related cracking may still occur, and repairs may be required.

6.13 Stormwater and Drainage

We recommend a permanent foundation drainage system be designed and constructed around the perimeter of the structure. The drainage system should consist of a four-inch diameter, Schedule 40 or ADS, perforated pipe surrounded with a free draining aggregate. The pipe should be located at the lowest elevation of the footing trench excavation such that gravity drainage may be achieved. Water collected in the drains should be discharged down-gradient of the structure.

We recommend the grading plan include slopes such that storm water run-off is directed away from the building and pavement areas to a storm water management system. We recommend ground surface adjacent to foundations be sloped a minimum of five percent within ten feet of the building. If the adjoining ground surface consists of hardscapes it may be sloped a minimum of two percent in the first ten feet. Water should not be allowed to infiltrate or pond adjacent to the foundations.

Soil conditions at this site are not suitable for stormwater infiltration. All stormwater should be tightlined and distributed to an appropriate facility, it should not be allowed to penetrate into the ground on the site as this may cause instability of the slope.

7.0 ADDITIONAL RECOMMENDED SERVICES

We recommend ALLWEST be retained to provide construction materials testing and observation to verify the soil and geologic conditions and the report recommendations are incorporated into the actual construction. The design engineer of record should determine applicable testing and special inspection requirements in accordance with the governing code documents. If we are not retained to provide required construction observation and materials testing services, we cannot be responsible for soil engineering related construction errors or omissions.

8.0 EVALUATION LIMITATIONS

This report has been prepared to assist the planning and design for the Ponderay Mixed-Use Lots located at Parcels #RPP00000107502A and RPP00000107401A in Ponderay, Idaho. Reliance by any other party is prohibited without the written authorization of ALLWEST. Our services consist of professional opinions and conclusions made in accordance with generally accepted geotechnical engineering principles and practices in the local area at the time this report was prepared. This acknowledgement is in lieu of all warranties, express or implied.

The following appendices complete this report:

Appendix A – Site and Exploration Plan

Appendix B – Test Pit Logs, Boring Logs, Unified Soil Classification System

Appendix C – Laboratory Test Results

Appendix D – Slope Stability Analyses

Appendix A Site and Exploration Plan

BASEMAP SOURCE: SATELLITE IMAGERY FROM GOOGLE EARTH PRO, JULY 28, 2021

TEST PIT NUMBER AND APPROXIMATE LOCATION

LEGEND:

BORING NUMBER AND APPROXIMATE LOCATION APPROXIMATE SLOPE STABILITY ANALYSES CROSS SECTION

690 W Capstone Court Hayden, Idaho 83835 (208) 762-4721 www.allwesttesting.com

FIGURE A-1: SITE AND EXPLORATION PLAN						
PROJECT: 120-311G/345G PONDERAY MIXED-USE LOTS						
LOCATION:	OCATION: PARCELS RP00000107502A & RPP00000107401A					
LIENT NAME: SAND CREEK CROSSING, LLC						
DATE: JULY, 2021 SCALE: NOT TO SCALE						

Appendix B

Test Pit Logs Boring Logs Unified Soil Classification System

ALLWEST HAYDEN, IDAHO **GEOTECHNICAL SECTION**

TEST PIT LOG

▼ AT COMPLETION

▼ AFTER EXCAVATING

DATE STARTED: 9/23/2020 **DATE FINISHED: 9/23/2020 OPERATOR:** Harvey Lippert COMPANY: Lippert Excavating LOGGER: Adam Richter

EXCAVATOR: John Deere 180LC **EXCAVATION METHOD: Smooth**

TEST PIT TP-1

Sheet 1 of 1

Excavation Bucket

WEATHER: PROJECT: 120-311G Ponderay Mixed-Use NOTES: GRAPHIC LOG DEPTH (ft) **USCS** TOTAL DEPTH: 10' **DESCRIPTION NOTES** Sandy SILT, brown, stiff, damp. Contains abundant costruction debris / concrete. (Fill) 2 Ξ 3 5 SILT, light brown, damp, medium stiff. 6 ₹ 8 9 10 Test pit TP-1 terminated at 10 feet. No caving observed. No groundwater observed. 11 WATER LEVELS ☑ WHILE EXCAVATING

HAMPEN, IDANO GEOTECHNICAL SECTION TEST PIT LOG WEATHER PROJECT: 120-311G Pondersy Mixed-Use TOTAL DEPTH: 5 DESCRIPTION Test pit TP-2 forminated at 5 feet. No groundwater observed. No groundwater observed. No groundwater observed. No groundwater observed.				T		
RAYOR, Daily of Company Liperating (Company Liperating) (Company Liperat						TEST PIT TP-2
TEST PIT LOG WEATHER, Man Rotter WEATHER, NOTES TOTAL DEPTH: S DESCRIPTION D	HAYDEN, IDAHO OF		OPERATOR: Harvey Lippert			
PROJECT: 120-311G Ponderary Mixed-Use Poorly-graded GRAVEL, gray, damp, dense. (Fill)				LOGGER	IY: Lippert Excavating Adam Richter	Excavation Bucket
Test pit TP-2 terminated at 5 feet. No caving observed. No groundhouter observed. Test pit TP-2 terminated at 5 feet. No groundhouter observed.				WEATHE	R:	
Peorly-graded GRAVEL, gray, damp, dense. (Fill) Silty CLAY, light brown, damp, medium stiff. Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. Test pit TP-2 terminated at 5 feet. No caving observed. Test pit TP-2 terminated at 5 feet. No groundwater observed.	PRO	JECT:	120-311G Ponderay Mixed-Use	NOTES:		
Peorly-graded GRAVEL, gray, damp, dense. (Fili) Silty CLAY, light brown, damp, medium stiff. Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11 11 11 11 11 11 11 11 1					T	
Peorly-graded GRAVEL, gray, damp, dense. (Fili) Silty CLAY, light brown, damp, medium stiff. Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11 11 11 11 11 11 11 11 1	±			0		
Peorly-graded GRAVEL, gray, damp, dense. (Fili) Silty CLAY, light brown, damp, medium stiff. Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11 11 11 11 11 11 11 11 1	Ē	SCS	TOTAL DEPTH: 5'	우		
Peorly-graded GRAVEL, gray, damp, dense. (Fili) Silty CLAY, light brown, damp, medium stiff. Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11 11 11 11 11 11 11 11 1	В	Š		—— ₹		NOTEO
Slity CLAY, light brown, damp, medium stiff. Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. Total pit TP-2 terminated at 5 feet. No caving observed. Total pit TP-2 terminated at 5 feet. No caving observed. Total pit TP-2 terminated at 5 feet. No caving observed. Total pit TP-2 terminated at 5 feet. Total pi	0			<u> </u>		NOTES
Sity CLAY, light brown, damp, medium stiff. Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11 11	U	١.	Poony-graded GRAVEL, gray, damp, dense. (Fill)			
Sity CLAY, light brown, damp, medium stiff. Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11 11	_					
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11						
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed.	1		Silty CLAY, light brown, damp, medium stiff.			
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed.	_					
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed.						
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11 11 11 11 11 12 13 14 15 16 16 17 17 18 18 19 19 10 10 11 11 11 11 11 11	2					
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11 11 11 11 11 12 13 14 15 16 16 17 17 18 18 19 19 10 10 11 11 11 11 11 11						
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11 11 11 11 11 12 13 14 15 16 16 17 17 18 18 19 19 10 10 11 11 11 11 11 11	_					
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 10 11 11 11 11 11 12 13 14 15 16 16 17 17 18 18 19 19 10 10 11 11 11 11 11 11	2	¥				
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 7 9 10 11	3	ฮ				
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 7 9 10 11	_					
Test pit TP-2 terminated at 5 feet. No caving observed. No groundwater observed. 7 9 10 11						
	4					
	_					
	5		Test pit TP-2 terminated at 5 feet.			
			No caving observed.			
7 - 8 - 9 10 11 11 11 11 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 1 - 11 - 1 -	_		No groundwater observed.			
7 - 8 - 9 10 11 11 11 11 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 11 - 1 - 1 - 11 - 1 -	e					
8— 9— 10— 11— —	U					
8— 9— 10— 11— —	_					
8— 9— 10— 11— —						
9— 10— 11— —————————————————————————————	7					
9— 10— 11— —————————————————————————————	_					
9 - 10 - 11						
10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	8					
10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -						
10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -						
10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	a					
	5					
	_					
	10					
	_					
12 WATER LEVELO	11					
12 WATER LEVELO						
12 WATER LEVELO	_					
	12		ATERILEVELO			

Sheet 1 of 1

▼ WHILE EXCAVATING▼ AT COMPLETION▼ AFTER EXCAVATING

		ALLWEST			RTED: 9/23/2020	TEST PIT TP-3
		OPERA.	TOF	SHED: 9/23/2020 R: Harvey Lippert	EXCAVATOR: John Deere 180LC	
		GEOTECHNICAL SECTION	COMPA	NY	: Lippert Excavating	EXCAVATION METHOD: Smooth Excavation Bucket
		TEST PIT LOG	LOGGE	R:	Adam Richter	Executation Businet
PROJ	IECT:	120-311G Ponderay Mixed-Use	WEATH NOTES:	EK		
		o o o . o . o . o . o . o . o . o		•		
<u> </u>			<u>ا</u>	ד כ		
"	(0			3		
DЕРТН (ft)	nscs	TOTAL DEPTH: 4'	GRAPHICLOG	=		
	n	DESCRIPTION	d	}		NOTES
0			ت ا	5		NOTES
		Silty CLAY, light brown, damp, medium stiff.				
_						
1-						
	M					
2	CL-ML					
3						
_						
4		Test pit TP-3 terminated at 4 feet.	TXX.			
		No caving observed. No groundwater observed.				
		No groundwater observed.				
5						
_						
6-						
7						
8						
9						
		, and the second				
10						
'0						
-						
11						
12	101	ATED I EVELS				

Sheet 1 of 1

☑ WHILE EXCAVATING☑ AT COMPLETION

▼ AFTER EXCAVATING

ALLWEST HAYDEN, IDAHO **GEOTECHNICAL SECTION**

TEST PIT LOG

DATE STARTED: 9/23/2020 **DATE FINISHED: 9/23/2020 OPERATOR:** Harvey Lippert COMPANY: Lippert Excavating LOGGER: Adam Richter

EXCAVATOR: John Deere 180LC **EXCAVATION METHOD: Smooth** Excavation Bucket

TEST PIT TP-4

WEATHER:

PROJECT: 120-311G Ponderay Mixed-Use NOTES: GRAPHIC LOG DEPTH (ft) **USCS** TOTAL DEPTH: 4' **DESCRIPTION NOTES** Sandy SILT, brown, stiff, damp. Contains abundant costruction debris / concrete. (Fill) Ξ 1 2 Silty CLAY, light brown, damp, medium stiff. CL-ML 3 Test pit TP-4 terminated at 4 feet. No caving observed. No groundwater observed. 5 6 8 9 10 11 WATER LEVELS ☑ WHILE EXCAVATING ▼ AT COMPLETION Sheet 1 of 1 ▼ AFTER EXCAVATING

ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO GEOTECHNICAL SECTION BORING LOG (US Customary Units) PROJECT: 120-311G Ponderay Mixed-Use			DATE FI DRILLEF COMPAI	NIS R: NY: R:	Geologic Di Adam Richt	/2020 [rill [BORING B-1 DRILL: Trailer Drill HAMMER: Manual DRILLING METHODS: Hollow Stem Augur				
DEPTH (ft)	TOTAL DEPTH: 50' DESCRIPTION	GRAPHIC LOG	SAMPLE #		FIELD BLOW COUNT (Recovery)	PLASTIC	LIM	ONTENT (⊢ LIC	QUID LIMIT	DEPTH (ft)
	Sandy SILT, light brown to brown, damp, stiff to very stiff.	G				0	2	0		0 60	0.0
1 -	candy cit_1, light brown to brown, damp, can to very can.										2.0
3 —	-2.5' Pocket Penetrometer Values = 1.75 - 2.25		B-1@2.5'	(11-10-9 12" = 67%)						4.0
5 —	-5' Pocket Penetrometer Values = 2.5 - 3 Particle-Size Disribution Test at 5 feet.		B-1@5'		7-5-4						6.0
6 —	Gravel = 2% Sand = 28% Silt / Clay = 70%			[16" = 89%)						<u>6</u> .0
8 —	Moisture Content Test at 5 feet = 25.1% -7.5' Pocket Penetrometer Values = 2 - 2.5 Silty SAND, brown, damp, loose.		 B-1@7.5'		4-5-4						<u>8</u> .0
9 —	Fines Content Test at 8 feet. Silt / Clay = 20%			[16" = 89%)						<u>1</u> 0.0
11 —	CLAY, light brown, moist, medium stiff to stiff11' Pocket Penetrometer Values = 1 - 1.5 Plasticity Test at 11 feet. Liquid Limit = 34 Plastic Limit = 24		B-1@10'	(1	1-2-3 8" = 100%)						<u>1</u> 2.0
13 —	Plasticity Index = 10 Moisture Content Test at 11 feet = 26%										<u>1</u> 4.0
15 —	Poorly-graded SAND, gray, moist to wet, dense. Fines Content Test at 15 feet. Silt / Clay = 8.1%		B-1@15'	(6-8-9 14" = 78%).						<u>1</u> 6.0
17 —			11111								18.0
18 —			111111								10.0
_20 ∑						0	5	0	10	00	20.0
20'	WATER LEVELS ▼ WHILE DRILLING ▼ AT COMPLETION ▼ AFTER DRILLING					₩ RQD	(%)			Sheet 1	of 3

			⊥ DATE S	TΔ	RTED: 10/1/	2020		BO	DINC	D 4	
	ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO		DATE F	IN	ISHED: 10/1/		DRIL	L: Trailer D	RING	D- I	
	GEOTECHNICAL SECTION		DRILLEI	R: N	Andy Y: Geologic D	rill		MER: Manu		04	A
			LOGGE	R:	Adam Rich	ter	DKIL	LING METH	10DS. HC	niow Stern	Augui
PRO	BORING LOG (US Customary Units) ECT: 120-311G Ponderay Mixed-Use		WEATH NOTES:		R: Clear						
	,										
(H)		90	# ~	,	EIEL D			CONTENT (9			(#)
DEРТН (ft)		IC L]	FIELD BLOW			ИІТ)		LIMIT	Ŧ
DEP	TOTAL DEPTH: 50'	GRAPHIC LOG	SAMPLE #		COUNT (Recovery)	FIEL	D "N'	" VALUE —			DEPTH (ft)
20	DESCRIPTION	GR	S S)	()	0	2	20	40	60	<u>2</u> 0.0
	Poorly-graded SAND, gray, moist to wet, dense (Cont'd)]		6-9-8						
21 —			B-1@20'		(12" = 67%)		•				
				<u>,</u>			: /:				
22 —			Ł	∤							<u>2</u> 2.0
				∤		122 EN					
23 —				∤			1.				
				∤			ļ : :`				
24 —	-24' groundwater encountered while drilling.			,							<u>2</u> 4.0
				1							
25 —	Sandy SILT, gray-brown, wet, medium dense. Fines Content Test at 25 feet.			<u>ר</u>		: : : :					
l	Fines Content Test at 25 feet. Silt / Clay = 56%		B-1@25'		4-5-6 (18" = 100%)						26.0
26 —		Ш			(16 - 100%)	::::\					20.0
27 —			E	፣		:::::					
21 -				1			\				
28 —	`	W		*			1::				<u>2</u> 8.0
-		N		1			: /: :				
29 —		Ш		1			\.				
			F	$\left\{ \left \right. \right. \right.$: :/:				
30 —	Poorly-graded SAND, gray, wet, medium dense.	Ш.		[4			• • \			· · · · · · · · · · · · · · · · · · ·	<u>3</u> 0.0
	1 bony-graded SAND, gray, wet, medium dense.				8-9-11			1::::::::::::::::::::::::::::::::::::::			
31 —			B-1@30'		(18" = 100%)						
				Ļ ₹			: : :				
32 —				1			: :				<u>3</u> 2.0
			F	$\{ $: : [:				
33 —			F	}			: : :				
l			\exists	<u>}</u>			:] :				<u>3</u> 4.0
34 —				<u></u>			:/: :				0 1.0
35 —				∤│			1 : :				
33—			1 1				: :				
36 —			B-1@35'		6-6-7 (18" = 100%)		. :				<u>3</u> 6.0
			:	Ļ	,	::::/	: : :				
37 —			F	$\left \frac{1}{2} \right $: : : : /:					
			F	$\left \cdot \right $: : : : : :					
38 —			E	<u> </u>				1			<u>3</u> 8.0
			E	$ \downarrow $							
39 —			\mathbb{F}	$ \downarrow $: : : : :					
				$ \downarrow $: : :/: : :	: : :	::::::			
-40	WATER LEVELS Hollow Stem Auger			Þ		0		<u>5</u> 0	100		40.0
20'	▼ WHILE DRILLING T 2" OD Split Speep (SPT)					₩ RQE	(%)				
	▼ AT COMPLETION 1 2 OD Spilt Spoot (Si 1) ▼ AFTER DRILLING					REC	υvΕ	RY (%)		Sheet 2	of 3
	* '" 'EIV DIVIELINO					l					

			DATI	= ST/	ARTED: 10/1/	2020		PODI	NC B	1	
	ALLWEST TESTING & ENGINEERING		DATE	E FIN	ISHED: 10/1/		DRIL	BORII L: Trailer Drill	NG B	- 1	
	HAYDEN, IDAHO GEOTECHNICAL SECTION				Andy Y: Geologic D	eill	HAM	MER: Manual			
					Adam Rich		DRIL	LING METHOD	OS: Holle	ow Stem /	Augur
DDO	BORING LOG (US Customary Units) ECT: 120-311G Ponderay Mixed-Use		WEA		R: Clear						
PROJ	ECT. 120-311G Folideray Mixed-OSE		INOT	L 3.							
(ff)		90.	#	<u>~</u>	FIELD			ONTENT (%)			(#)
DEPTH (ft)	TOTAL DEDTIL 50	GRAPHIC LOG	SAMPLE #	SAMPLER	BLOW			IIT ├── L VALUE ──	IQUID L	IMIT	DEPTH (
DEF	TOTAL DEPTH: 50'	A A	AM	AM	(Recovery)	FIEL	וו ט.	VALUE -			DEF
40	DESCRIPTION	GR	00	- U	` ,	0	2	0	40	60	<u>4</u> 0.0
	CLAY, gray, moist to wet, soft to medium stiff. -40' Pocket Penetrometer Values = 0.25 - 0.5				2-2-3	: : <i> </i> : : : :					
41 —	Plasticity Test at 40 feet. Liquid Limit = 37		B-1@40'		(18" = 100%)	: .¶. : : :	<i>[</i>		::::		
	Plastic Limit = 24 Plasticity Index = 13			\coprod							
42 —				Ħ					1 : : : :		42.0
	Moisture Content Test at 40 feet = 37%			\sharp		10.11	::::		::::		
43 —				\sharp							
				#							44.0
44 —				Ħ					 		<u>4</u> 4.0
				A							
45 —	-45' Pocket Penetrometer Values = 0.25 - 0.5			1		44 : : : :					
			B-1@45'		2-2-3 (18" = 100%)	: • : : :			::::	: : : : :	46.0
46 —					(10 - 10070)						
47 —				昪							
*′				#							
48 —	,			#							<u>4</u> 8.0
				Ħ					::::		
49 —				Ħ							
				Ħ							
50 —	-50' Pocket Penetrometer Values = 0.25 or less										<u>5</u> 0.0
	-50 1 ocket i elletionieter values = 0.25 or less		Y		2-2-2						
51 —			B-1@50'		(18" = 100%)						
	Boring B-1 terminated at 51.5 feet.			Ш					::::		
52 —											<u>5</u> 2.0
53 —											
.											54.0
54 —											•
55 —											
56 —									1::::		<u>5</u> 6.0
57 —											
58 —									1::::		<u>5</u> 8.0
59 —											
											00.0
60	WATER LEVELS Hollow Stem Auger					0	5	0 1	00		60.0
20'	▼ WHILE DRILLING					RQI REC) (%) :0\/=¤	RY (%)			
	▼ AT COMPLETION 1 2 OD Split Spool (GF1) ▼ AFTER DRILLING					my NEC	,	(70)	Γ	Sheet 3	of 3
I	- I										

	ALLWEST TESTING A ENGINEERING		DATE	ST/	ARTED: 10/2/	2020		BOB	RING B-2	
	ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO		DATE	FIN	ISHED: 10/2/			L: Trailer Dri	II	
	GEOTECHNICAL SECTION				Andy Y: Geologic D	rill		MER: Manua	ıl DDS: Hollow Stem	Augur
	BORING LOG (US Customary Units)				Adam Rich R:Clear	ter	DIVIL		JBG. FIGHOW CIGHT	7 tagai
PRO	ECT: 120-311G Ponderay Mixed-Use		NOTE		T. Cleal					
(ft)		.0G	#	œ	FIELD			ONTENT (%		(ft)
DEPTH (ft)	TOTAL DEPTH 991	101	PLE	PLE	BLOW			VALUE —	LIQUID LIMIT	DEPTH (
DEI	TOTAL DEPTH: 30'	GRAPHIC LOG	SAMPLE #	SAMPLER	COUNT (Recovery)	• FILL	וו ט.	VALUE -		DEI
	DESCRIPTION	8 6 8	0)	13		0	20	0	40 60	0.0
	Sandy SILT with organics and wood debris, brown, damp, medium stiff to stiff. (Uncontrolled Fill)			\exists						
1 —				\exists			49			
				\sharp		:::::::::	;;;			
2 —										2.0
				$ \mathcal{A} $						
3 —				\Box			:::			
				\exists						4.0
4 —				F						T0
5				\exists			: : :			
" _				I						
6 —		\bowtie	B-2@5'							<u>6</u> .0
	Silty SAND with gravel, gray, damp, medium stiff. (RelicTopsoil)			1						
7 _	SILT, light brown to brown, damp, stiff to very stiff.			\exists						
		M		A						
8 —		Wh		A						8.0
		IWI		Ξ						
9 —		Ш		\exists						
				\exists						
10 —	CLAY, light brown, moist, medium stiff.			#						10.0
	-10' Pocket Penetrometer Values = 0.5 - 0.75 Plasticity Test at 10 feet.		B-2@10'		1-1-2					
11 —	Liquid Limit = 31 Plastic Limit = 23				(18" = 100%)	. \: : : :				
40	Plasticity Index = 8			芦						12.0
12 —	Moisture Content Test at 10 feet = 31%			\exists						
13 —										
				$ \mathcal{I} $: : : : : : \				
14 —				\Box			/: : :			14.0
				Ħ			:\: :			
15 —	Silty SAND, gray to brown, moist to wet, medium dense to			\Box			: :\:			
	dense.				9-10-10					
16 —	Fines Content Test at 15 feet. Silt / Clay = 14%		B-2@15'		(12" = 67%)					<u>1</u> 6.0
			1	井						
17 —			1	#						
				\exists						18.0
18 —]	Ξ						10.0
40			1	\exists						
19 —				\exists						
20 🗸				<u> </u>						20.0
	WATER LEVELS Hollow Stem Auger					0	5(%)	0	100	
	☐ WHILE DRILLING ☐ 3" Shelby Tube ☐ The state of the st							RY (%)		
	▼ AFTER DRILLING								Sheet 1	1 of 2

	ALLWEST TESTING & ENGINEERING		DATE	FIN	ARTED: 10/2/ ISHED: 10/2/	10000	DRII I ·	BORII Trailer Drill	NG B	-2	
	HAYDEN, IDAHO GEOTECHNICAL SECTION				Andy Y: Geologic D		HAMMI	ER: Manual			
			LOGG	GER:	Adam Rich		DRILLI	NG METHOD	OS: Hollo	ow Stem /	Augur
PR∩I	BORING LOG (US Customary Units) ECT: 120-311G Ponderay Mixed-Use		NOTE		R: Clear						
11100	EOT. 120-01101 onderay winder-ose			_0.							
(ft)		90	#	~	5151.5			NTENT (%)			(#)
DЕРТН (ft)]]	무	٦LEI	FIELD BLOW	l		「 ├──	IQUID L	IMIT	DЕРТН (ft)
	TOTAL DEPTH: 30'	GRAPHIC LOG	SAMPLE #	SAMPLER	COUNT (Recovery)	• FIELI	D "N" V	ALUE ——			DEF
20	DESCRIPTION	GR.	S	S	()	0	20		40	60	<u>2</u> 0.0
	Silty SAND, gray to brown, moist to wet, dense (Cont'd)				5-10-10						
21 —			B-2@20'		(12" = 67%)		: / :}:		::::		
				\coprod			::/ :	· · · · · · · · · · · · · · · · · · ·			
22 —				뉨			· ·/· ·		1		<u>2</u> 2.0
				\exists		1)/:X					
23 —				$ \mathcal{I} $			/: : :				
						: : : : : : <i>:</i>	<i>l</i> ::::::::		: : : :		
24 —	-24' groundwater encountered while drilling.			Ħ		 			1		<u>2</u> 4.0
				A							
25 —				T		: : : /: : /: :					
			B-2@25'		8-4-4 (16" = 89%)						26.0
26 —					(10 - 0370)						
27 —				7							
21						:					
28 —	`			7		\ :	: : : :				<u>2</u> 8.0
				$ \mathcal{A} $:::::\:	: : : :		: : : :		
29 —				$ \mathcal{A} $							
				A		: : : :					
30	Poorly-graded SAND, gray-brown, wet, medium dense.			무							<u>3</u> 0.0
	Toony graded 67 (145), gray brown, wet, mediam deribe.		D. 000001		4-6-8		<u> </u>				
31 —			B-2@30'		(18" = 100%)						
	Boring B-2 terminated at 31.5 feet.			Ш							00.0
32 —							.				<u>3</u> 2.0
33 —								· • • • • • • • • • • • • • • • • • • •			
24							: : : :		: : : :		34.0
34 —											
35 —											
							::::::		::::		
36 —									1 : : : :		<u>3</u> 6.0
37 —							::::				
38 —							· · · ·				<u>3</u> 8.0
							::::				
39 —											
											40.0
40	WATER LEVELS Hollow Stem Auger					0	50	1	00		+ ∪.U
20'	☑ WHILE DRILLING ☑ 3" Shelby Tube					₩ RQD REC		′ (%)			
	▼ AFTER DRILLING					,		` '		Sheet 2	of 2

			DAT	F STA	ARTED: 10/2/	2020		ВО	RING	· D 2	
	ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO		DAT	E FIN	ISHED: 10/2/		DRIL	L: Trailer [D-3	
	GEOTECHNICAL SECTION		COM	.LER: 1PAN`	Andy Y: Geologic D	rill		MER: Man		Hollow Stem	Augur
	BORING LOG (US Customary Units)		LOG	GER:	Adam Rich R: Clear	ter	DIVIL	LIIVO IVIL I	11000.1	IOIIOW OtCITI	Augui
PRO	ECT: 120-311G Ponderay Mixed-Use		NOT		R: Clear						
(ff)		.0G	#	ď	FIELD			ONTENT ((#)
DEPTH (ft)	TOTAL DEDTIL 50	12	片	PLE	BLOW			IIT \		ID LIMIT	DEPTH (ft)
	TOTAL DEPTH: 50'	GRAPHIC LOG	SAMPLE #	SAMPLER	COUNT (Recovery)	FIEL	א ט.	VALUE -			DEF
	DESCRIPTION	GR	o,	0)	` ,	0	2	0	40	60	0.0
	Interbedded Sandy SILT and Silty CLAY soils with organics, dark gray-green to black, damp to moist, medium stiff to	\bowtie		A							
1 _	stiff. Contains remnant wood debris in upper 15 feet (Uncontrolled Fill).			\mathbf{H}							
	($\frac{1}{2}$							
2 _				\exists							2.0
				H		17711	: : : :				
3 —				#							
				#							
4 —				\sharp							4.0
				A							
5 —				A		<i>.</i>					
				A			: : :				6.0
6 —				\mathcal{H}							1
7 _				8							
′ –				8							
8 —	-7.5' Pocket Penetrometer Values = 1 - 2				000					· · · · · · · · · · · · · · · · · · ·	8.0
			B-3@7.5	5'	2-3-3 (12" = 67%)	• • • • • • •					
9 —				\parallel							
				\mathbb{H}							
10 —	-10' Pocket Penetrometer Values = 1 - 1,25	\bowtie		낚		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	10.0
			B-3@10	,	2-3-8						
11 —			2-0@10		(16" = 89%)						
				井							12.0
12 —				\mathbf{H}							12.0
10				\exists							
13 —				\exists							
14 —				\exists							14.0
'				#							Γ
15 —											
	-15' Pocket Penetrometer Values = 1 - 1.75				2-3-4						
16 —			B-3@15	'	2-3-4 (18" = 100%)	• • • •					<u>1</u> 6.0
				\perp							
17 —				H							
		\bowtie		#							
18 —				#							18.0
				#							
19 —				#							
				Ħ							20.0
20	WATER LEVELS Hollow Stem Auger	XXX		مسر	I	0	5	0	100		120.0
	▼ WHILE DRILLING ▼ AT COMPLETION ▼ AT COMPLETION					₩ RQI		RY (%)			
	¥ AT COMPLETION ▼ AFTER DRILLING							` '		Sheet 1	of 3

	ALLWEST TESTING & ENGINEERING		DATE	ST/	ARTED: 10/2/	2020 BORING B-3	
	ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO	DATE	E FIN	ISHED: 10/2/		3 D-3	
	GEOTECHNICAL SECTION		COM	LEK:	Andy Y: Geologic D	rill HAMMER: Manual DRILLING METHODS: Hollow Stem Au	ıaıır
	BORING LOG (US Customary Units)		LOG	GER:	Adam Rich	ter Briteling METHODS. Hollow Stelli Ad	igui
PROJ	ECT: 120-311G Ponderay Mixed-Use		NOT	ES:	R:Clear		
(ft)		.0G	#	<u>~</u>	FIELD	▼ WATER CONTENT (%)	E)
DЕРТН (ft)	TOTAL DEDTIL 50	□) - 	PLE	BLOW	PLASTIC LIMIT LIQUID LIMIT	DEР I Η (π)
DEF	TOTAL DEPTH: 50'	GRAPHIC LOG	SAMPLE #	SAMPLER	COUNT (Recovery)	FIELD "N" VALUE — 12 22 22 23 23 24 25 25 25 25 25 25 25	Д П
20	DESCRIPTION	GR	o o	0)	, ,,	0 20 40 60 20	0.0
	Silty SAND, gray, moist to wet, medium dense. Fines Content Test at 20 feet.				5-6-7		
21 —	Silt / Clay = 18%		B-3@20'		(18" = 100%)	· · · · · · • • • · · · · · · · · · · ·	
				\coprod			
22 —				\exists		22	2.0
				\exists			
23 —				$\not\sqsubseteq$			
				\exists			
24 —				H		24	4.0
				H		X::: ::: :::: :::::	
25 —				#			
			B-3@25		5-5-6		0 0
26 🔽	-26' groundwater encountered while drilling.				(18" = 100%)		6.0
				井			
27 —				A			
				A		20	8.0
28 —		\mathbb{N}		A			3.0
				\mathcal{H}			
29 —				\exists			
30 —				\exists		30	0.0
30 —				\top			
31 —			B-3@30'		4-5-7 (18" = 100%)		
			3	Щ	,		
32 —				Ħ		32	2.0
				H			
33 —			3	H			
				F			
34 —				\exists		34	4.0
				\exists			
35 —							
			Bacas		5-9-13		
36 —			B-3@35'		(18" = 100%)	36	6.0
				#			
37 —				Ħ		· · · · · · · · · · /. · · · · · · · · · · · · · · · · ·	
				#			
38 —				#		38	8.0
			4	#			
39 —				Ħ			
			:	Ħ		1	0.0
40	WATER LEVELS Hollow Stem Auger	1-1-11-1	-1		1	0 50 100	J.U
	▼ WHILE DRILLING T 2" OD Split Spoon (SPT)						
	▼ AT COMPLETION					Sheet 2 o	of 3
	* '" 'E'' DIVIELITO						_

			ΙΔΔΤΙ	= ST/	ARTED: 10/2/	2020		PODIN	IC D 2	
	ALLWEST TESTING & ENGINEERING				ISHED: 10/2/		DRII	L: Trailer Drill	NG B-3	
	HAYDEN, IDAHO GEOTECHNICAL SECTION				Andy Y: Geologic D	eill	HAM	MER: Manual		
					Adam Rich		DRIL	LING METHOD	S: Hollow Stem	ı Augur
DDO	BORING LOG (US Customary Units) ECT: 120-311G Ponderay Mixed-Use		WEA		R: Clear					
PROJ	ECT. 120-311G Folideray Mixed-Ose		INOT	L 3.						
(ff)		90.	#	œ	FIELD			ONTENT (%)		(H)
DEPTH (ft)	TOTAL DEPTH 501	GRAPHIC LOG	SAMPLE #	SAMPLER	BLOW			IIT ├── LI VALUE —	QUID LIMIT	ОЕРТН (
DEF	TOTAL DEPTH: 50'	A P	AM	AM	(Recovery)	FIEL	וו ט	VALUE -		DEF
40	DESCRIPTION	GR	0)	- U	` ,	0	2	0 4	10 6	<u>0</u> 40.0
	CLAY, gray, moist to wet, soft. -40' Pocket Penetrometer Values = 0.25 - 0.5				2-2-3	: : // : : : :				
41 —	Plasticity Test at 40 feet. Liquid Limit = 38		B-3@40'		(18" = 100%)	: . • . : : :	<i>[</i>			
	Plastic Limit = 24 Plasticity Index = 14			\coprod						
42 —				\exists				· · · · · · · · · · · · · · · · · · ·		42.0
	Moisture Content Test at 40 feet = 37%			\sharp		13/11N				
43 —				#						
				#						44.0
44 —				Ħ						44.0
				A						
45 —	-45' Pocket Penetrometer Values = 0.25 - 0.5			T		4 ::::				
			B-3@45'		2-2-2 (18" = 100%)	: • : : :	: : :			46.0
46 —					(10 - 10070)					
47 —				昪						
*′				#						
48 —	`			H						<u>4</u> 8.0
				#						
49 —				Ħ						
				Ħ						
50 —	-50 Pocket Penetrometer Values = 0.25 - 0.75									<u>5</u> 0.0
	-50 FOCKET FIREHOMETER Values = 0.25 - 0.75				2-3-4					
51 —			B-3@50'		(18" = 100%)					
	Boring B-3 terminated at 51.5 feet.			Ш						
52 —										<u>5</u> 2.0
53 —										
.										54.0
54 —										
55 —										
56 —										<u>5</u> 6.0
57 —										
58 —										<u>5</u> 8.0
59 —										
										00.0
60	WATER LEVELS Hollow Stem Auger	1				0	5	0 1	00	60.0
26'	▼ WHILE DRILLING					RQ□ REC) (%) ()/==	SV (%)		
	▼ AT COMPLETION					EEE REC	OVER	X1 (70)	Sheet	3 of 3
	-									

			DATI	F STA	ARTED: 10/2/	2020		BORII	NG B	1	
	ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO		DATI	E FIN	ISHED: 10/2/		DRIL	L: Trailer Drill	NG D	-4	
	GEOTECHNICAL SECTION				Andy Y: Geologic D	rill		MER: Manual LING METHOD	NC. Halla	uu Ctam	۸۰۰۰
	BORING LOG (US Customary Units)		LOG	GER:	Adam Rich		DIXIL	LING WETTIOL	73. I IUIIC	W Stelli	Augui
PRO	ECT: 120-311G Ponderay Mixed-Use		NOT		R: Clear						
	·										
(£)		90	#	~	E1E1 B			CONTENT (%)			(ff)
DEPTH (ft)		2	岸	٦E	FIELD BLOW			NIT - LI	QUID L	IMIT	王
	TOTAL DEPTH: 30'	GRAPHIC LOG	SAMPLE #	SAMPLER	COUNT (Recovery)	• FIEL	.D "N"	VALUE ——			DEPTH (
	DESCRIPTION	GR	S	Ø	()	0	2	20 4	40	60	0.0
	SILT, light brown, damp, medium stiff.			Ħ			: : :				
1 _				Ħ							
				H							
2 _				F							2.0
				7		4921N					
3 —				\exists			. N.				
				\exists							
4 —				H							<u>4</u> .0
				H							
5 —	-5' Pocket Penetrometer Values = 0.75 - 1			4							
			B-4@5'		2-2-3						6.0
6 —		Ш			(12" = 67%)						0.0
l _				胄							
7 —		М		H							
8 _	`	W)		H			: : :				8.0
° –		M		H			: : :				
9 —				#							
				#			: : :				
10				녍					: : : :		<u>1</u> 0.0
	CLAY, light brown, moist, soft. -10' Pocket Penetrometer Values = 0.25 - 0.75				1-1-2						
11 —	Plasticity Test at 10 feet. Liquid Limit = 31		B-4@10	'	(18" = 100%)		: : :		::::		
	Plastic Limit = 24 Plasticity Index = 7			\coprod		\					
12 —				\exists		· · \ · · ·			1		<u>1</u> 2.0
	Moisture Content Test at 10 feet = 37%			\Box		: : :\ : :	: : :		::::		
13 —											
				7		: : : : \ :					440
14 —				Ħ		 : : : : \					<u>1</u> 4.0
				Ħ			\ \				
15 —	Poorly-graded SAND, gray-brown, moist to wet, medium	(///					\ : :				
10	dense. Fines Content Test at 15 feet.		B-4@15	.	6-7-9 (12" = 67%)		: \ :				16.0
16 —	Silt / Clay = 4.7%				(12 0170)		: :				
17 —			:	月			::\:				
				#			: : :				
18 —				Ħ					: : : :		<u>1</u> 8.0
			1	H							
19 —]	\mathbf{H}			: : :\				
				\mathbb{H}							
20	WATER LEVELS Hollow Stem Auger		.	1		0	5	i0 1	00		20.0
24'	▼ WHILE DRILLING					₩ RQE	(%)				
	▼ AT COMPLETION THE 2 OD Spill Spool (SF1)					REC	OVE	RY (%)	Г	Sheet 1	of 2
	▼ AFTER DRILLING								L	5.7551	J, Z

			DATE	ST/	ARTED: 10/2/	2020		DODIN	IC B 4	
	ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO		DATE	FIN	ISHED: 10/2/		DRILL	: Trailer Drill	IG B-4	
	GEOTECHNICAL SECTION				Andy Y: Geologic D		HAMM	IER: Manual	O. 11-11 Ot	A
			LOG	GER:	Adam Rich		DKILL	ING METHOD	S: Hollow St	em Augur
PRO	BORING LOG (US Customary Units) ECT: 120-311G Ponderay Mixed-Use		WEA NOTI		R: Clear					
	,									
Œ)		90	#	~				NTENT (%)		(ft)
DEPTH (ft)		IC L	닏	'n	FIELD BLOW			T	QUID LIMIT	DEPTH
	TOTAL DEPTH: 30'	GRAPHIC LOG	SAMPLE #	SAMPLER	COUNT (Recovery)	● FIEL) "N" \	/ALUE ——		- 岿
20	DESCRIPTION	GR	S)	S	(110001017)	0	20	4	0	60 20.0
	Poorly-graded SAND, gray-brown, moist to wet, medium dense (Cont'd)				5-10-11		:::			
21 —	•		B-4@20'		(18" = 100%)					
				\coprod			: : :/			
22 —				\exists			- /- -	· · · · · · · · · · · · · · · · · · ·		22.0
				\exists		6223				
23 —				Ħ			/::			
				H		: : : : <i> </i>	:::			
24 🔽	-24' groundwater encountered while drilling.			#		 				<u>2</u> 4.0
	•			A		//: :/ : :/: :				
25 —	Silty SAND, gray-brown, wet, loose.			甘		:::/:::				
			B-4@25'		2-3-3					26.0
26 —					(14" = 78%)					20.0
				莒						
27 —				H						
28 —	`			甘						28.0
20 —				H						
29 —				\exists						
-				#			: : :			
30				廿						30.0
	Poorly-graded SAND, gray-brown, wet, medium dense.		-		4-5-6					
31 —			B-4@30'		(18" = 100%)		: : :			
	Boring B-4 terminated at 31.5 feet.			Ш						
32 —	Bolling B-4 tellimated at 5 h.5 leet.							· · · · · · · · · · · · · · · · · · ·		32.0
							: : :			
33 —										
34 —										34.0
35 —										
	•									36.0
36 —										::
37 —										
0, _										
38 —										<u>3</u> 8.0
39 —										
40-	WATER LEVEL C					0	50		00	40.0
24'	WATER LEVELS					₩ RQD	(%)		J-0	
	▼ AT COMPLETION THE 2 OD Spill Spool (SF1)					REC	OVER	Y (%)	Ch-	et 2 of 2
	▼ AFTER DRILLING								Sne	er ∠ OI Z

			DATI	= ST/	ARTED: 10/2/	2020	1	BOB	ING B-5	
	ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO		DATI	E FIN	ISHED: 10/2/		DRIL	L: Trailer Dril		
	GEOTECHNICAL SECTION				Andy Y: Geologic D	rill		MER: Manua	DDS: Hollow Stem	۸۰۰
	BORING LOG (US Customary Units)		LOG	GER:	Adam Rich		DKIL	LING METAC	DS. Hollow Stelli	Augui
PRO	ECT: 120-311G Ponderay Mixed-Use		NOT		R: Clear					
(ft)		90	#	ď	FIELD			CONTENT (%)		(#)
DEPTH (ft)	TOTAL DEPTH 501	⊒ □	PLE	PLE	BLOW			/IIT ┣───── 'VALUE ──	LIQUID LIMIT	ОЕРТН (
DEF	TOTAL DEPTH: 50'	GRAPHIC LOG	SAMPLE #	SAMPLER	(Recovery)	● FIE	LD N	VALUE —	_	DEF
	DESCRIPTION	GR	0)	1.3		0	2	20	40 60	0.0
	SILT, light brown, damp, very stiff.			\exists						
1 –				\exists						
							::::			
2 —				\Box		74				2.0
				Ħ						
3 —				F						
4 —				\exists						4.0
4 -				\exists						
5 —	El Daniel de Daniel de La Carte de La Cart			H						
	-5' Pocket Penetrometer Values = 1.75 - 2.5				5-4-4					
6 —			B-5@5'		(12" = 67%)	· · · · •	· · · ·			<u>6</u> .0
				#						
7 —		1		H						
		IN		A						0.0
8 —		W		H						8.0
				Ξ						
9 —				\exists						
10 —		Ш		귈						<u>1</u> 0.0
	CLAY, light brown, moist, medium stiff to stiff10' Pocket Penetrometer Values = 1.5 - 2				2-3-4					
11 —	Plasticity Test at 10 feet. Liquid Limit = 35		B-5@10		(18" = 100%)	· •				
	Plastic Limit = 25 Plasticity Index = 10			\perp						
12 —										12.0
	Moisture Content Test at 10 feet = 30%			Ħ						
13 —				Ħ						
				\mathcal{F}						14.0
14 —				\exists						<u> </u>
15 —										
	Silty SAND, gray-brown, moist to wet, medium dense.									
16 —			B-5@15							<u>1</u> 6.0
			:							
17 —				$ \sharp $						
				#						40.5
18 —				#						18.0
			1	H						
19 —				\mathbf{H}						
20.				<u>H</u>		· · · · · ·	· · · ·			20.0
	WATER LEVELS Hollow Stem Auger					0 RQI		50	100	
	☐ WHILE DRILLING ☐ 3" Shelby Tube ☐ TOMPLETION ☐ 3" Shelby Tube							RY (%)		
	▼ AFTER DRILLING					Sheet 1	of 3			

DATE STARTED: 10/2/2020 **BORING B-5** ALLWEST TESTING & ENGINEERING DATE FINISHED: 10/2/2020 DRILL: Trailer Drill HAYDEN, IDAHO DRILLER: Andy HAMMER: Manual **GEOTECHNICAL SECTION** COMPANY: Geologic Drill DRILLING METHODS: Hollow Stem Augur LOGGER: Adam Richter **BORING LOG (US Customary Units)** WEATHER: Clear PROJECT: 120-311G Ponderay Mixed-Use NOTES: GRAPHIC LOG WATER CONTENT (%) Œ DEPTH (ft) SAMPLE# SAMPLER **FIELD** DEPTH PLASTIC LIMIT | LIQUID LIMIT **BLOW** ● FIELD "N" VALUE -TOTAL DEPTH: 50' COUNT (Recovery) **DESCRIPTION** 60 20.0 Silty SAND, gray-brown, moist to wet, medium dense 5-5-6 Fines Content Test at 20 feet. B-5@20' (18" = 100% 21 Silt / Clay = 24% 22.0 22 23 24.0 24 V -24' groundwater encountered while drilling. 25 B-5@25 (12" = 67%)26.0 26 27 28.0 28 29 30.0 30 7-8-12 B-5@30 (14" = 78%)31 32.0 32 33 <u>3</u>4.0 35 5-13-13 B-5@35 36.0 (14" = 78%)36 37 38.0 38 39 40.0 100 WATER LEVELS Hollow Stem Auger ₩ RQD (%) 3" Shelby Tube RECOVERY (%) ▼ AT COMPLETION Sheet 2 of 3 ▼ AFTER DRILLING

ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO GEOTECHNICAL SECTION BORING LOG (US Customary Units) PROJECT: 120-311G Ponderay Mixed-Use DATE STARTED: 10/2/2020 DATE FINISHED: 10/2/2020 DRILLER: Andy COMPANY: Geologic Drill LOGGER: Adam Richter WEATHER: Clear NOTES: DRILL: Trailer Drill HAMMER: Manual DRILLING METHODS: Hollor NOTES:	
GEOTECHNICAL SECTION BORING LOG (US Customary Units) DRILLER: Andy COMPANY: Geologic Drill LOGGER: Adam Richter WEATHER: Clear	v Stom Augur
BORING LOG (US Customary Units) LOGGER: Adam Richter WEATHER: Clear	v Stom Augur
BORING LOG (US Customary Units) WEATHER: Clear PROJECT: 120-311G Ponderay Mixed-Use NOTES:	v Sterri Augur
PROJECT: 120-311G Ponderay Mixed-Use NOTES:	
€ WATER CONTENT (%)	(ft)
# BLOW COUNT (Recovery) DESCRIPTION WATER CONTENT (%) PLASTIC LIMIT → LIQUID LII (Recovery) DESCRIPTION WATER CONTENT (%) PLASTIC LIMIT → LIQUID LII (Recovery) 0 20 40	DEPTH (
TOTAL DEPTH: 50' TOTAL DEPTH: 50' THE WAR AND TOTAL DEPTH: 50'	
	60 40.0
CLAY, gray, wet, soft.	
Plasticity Test at 40 feet. Liquid Limit = 35 Plastic Limit = 34	
41 Plastic Limit = 24 Plasticity ndex = 11 (18 = 100%)	
42 – Moisture Content test at 40 feet = 37%	42.0
Wolstufe Content test at 40 feet = 57 //	
	44.0
45	
B-5@50' (18" = 100%) · • · · · · · · · · · · · · · · · · ·	46.0
	48.0
50	<u>5</u> 0.0
2-3-3	
51 _ (18" = 100%)	
Boring B-5 terminated at 51.5 feet.	
52 — Boiling B-3 terminated at 31.3 feet.	<u>5</u> 2.0
53 —	
54 —	<u>5</u> 4.0
55—	
56 —	<u>5</u> 6.0
57 —	
	58.0
58 —	
59 _	
	60.0
WATER LEVELS Hollow Stem Auger 0 50 100 RQD (%)	
▼ AT COMPLETION 3" Shelby Tube	
	Sheet 3 of 3

DATE STARTED: 6/9/2021 **BORING B-6** ALLWEST TESTING & ENGINEERING DATE FINISHED: 6/9/2021 DRILL: Trailer Drill HAYDEN, IDAHO DRILLER: Andy HAMMER: **GEOTECHNICAL SECTION** COMPANY: Geologic Drill DRILLING METHODS: Hollow Stem Augur LOGGER: Adam Richter BORING LOG (US Customary Units) WEATHER: Overcast PROJECT: 120-345G Ponderay Mixed-Use Lot 2 NOTES: GRAPHIC LOG ▼ WATER CONTENT (%) Œ DEPTH (ft) SAMPLER **FIELD** PLASTIC LIMIT | LIQUID LIMIT SAMPLE **BLOW** ● FIELD "N" VALUE -TOTAL DEPTH: 36.5' COUNT (Recovery) DESCRIPTION <u>60 0</u>.0 SILT, light brown, damp, stiff. to very stiff. (Undocumented 2.0 7-8-10 S-1 (0" = 0%)4.0 @5' Pocket Penetrometer Values = 2.75-3.5 S-2 18" = 100% 6.0 Sandy SILT, light brown, wet, soft. (Undocumented Fill) 8.0 @7.5' Pocket Penetrometer Value = 0.5 or less 8 1-2-1 18" = 100%) 10.0 Silty SAND, tan-gray, damp, medium dense. Particle-Size Dsitribution Test at 10 feet. 2-4-4 Sand = 78% 18" = 100%) 11 Silt / Clay = 22% 12.0 12 13 <u>1</u>4.0 15 Lean CLAY, light brown, moist, medium stiff. @15' Pocket Penetrometer Values = 1.0-1.5 2-2-7 Lab Testing at 15 feet. S-6 16.0 18" = 100% 16 Liquid Limit = 45 Plastic Limit = 23 Plasticity Index = 21 17 Moisturé Content = 33% Poorly-graded Fine SAND with silt, tan-gray, moist, medium dense. Sand was fine-grained. 18.0 18 19 100 WATER LEVELS Hollow Stem Auger **◯** RQD (%) 3" Shelby Tube RECOVERY (%) **▼** AT COMPLETION Sheet 1 of 2 ▼ AFTER DRILLING

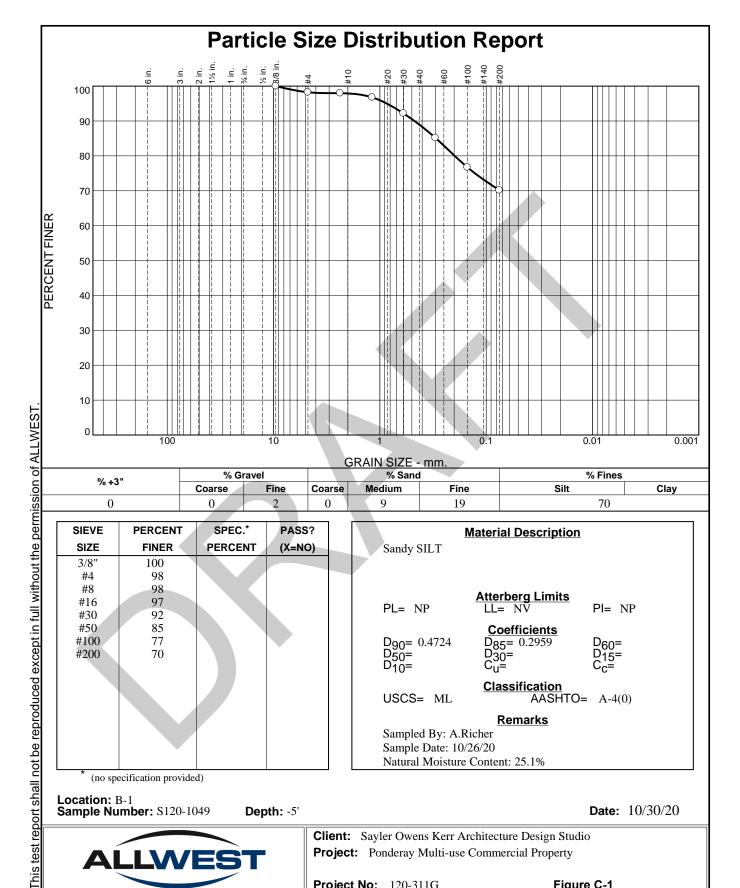
	ALLWEST TESTING & ENGINEERING		DAT	E ST/	ARTED: 6/9/2	2021 BORING B-6				
	HAYDEN, IDAHO				IISHED: 6/9/2	2021	DRILL: Trailer Drill			
	GEOTECHNICAL SECTION		COM	1PAN	Andy Y: Geologic D		HAMM		S: Hollow Stem	ı Augur
	BORING LOG (US Customary Units)				: Adam Rich R:Overcast	ter	DI WEE		oc. Honow Ctorn	, lugui
PROJ	ECT: 120-345G Ponderay Mixed-Use Lot 2		NOT		R: Overcasi					
(ft)		.oG	#	2	FIELD			ONTENT (%)		(ft)
DEРТН (ft)	TOTAL DEDTIL 20 C	일 1 2	H	PLE	BLOW			T ├── 【 L /ALUE <i>─</i> ─	IQUID LIMIT	DEPTH
	TOTAL DEPTH: 36.5'	GRAPHIC LOG	SAMPLE #	SAMPLER	(Recovery)	• ' ' ' '	י או עב	ALUL		DEI
20	DESCRIPTION	GR	, 0,			0	20		40 60	<u>0</u> 20.0
	Lean CLAY, light brown, moist, medium stiff. @20' Pocket Penetrometer Values = 0.5-0.75				1-2-6					
21 —			S-7		(18" = 100%)	:::₹::				
	Sandy SILT, tan-gray, wet, medium dense.			\parallel						
22 —	Carray OLET, tan gray, wet, modalin dense.			\sharp		74		· · · · · · · · · · · · · · · · · · ·		22.0
				\sharp		177 N				
23 —				\sharp						
				\Box						04.0
24 —				A						24.0
				A						
25 —	Particle-Size Distribution Test at 25 feet.			1						
200	Sand = 35% Silt / Clay = 6%		S-8		4-4-4 (18" = 100%)	: : : : :	: : : :			26.0
26 —		Ш			(10 - 10070)	: : : : :				
27 —		$\{ \ \ $		昪						
		Ш		H						
28 —	`	W		H						28.0
		Ш		H		: : : : : :	: : : :			
29 —		ШМ		Ħ						
				H						
30 —	Poorly-graded Fine to Medium SAND, tan-gray, wet,			H						30.0
	medium dense.				4-5-6					
31 —			S-9		(18" = 100%)					
				#			\::::			
32 —			}	Ħ			\ 			32.0
				Ħ			: :\: :			
33 🔽				H			::\:			
			-	H			: :\:			34.0
34 —				8			\	 		104.0
25				\exists			: : : \			
35 —			1	T						
36 —			S-10		7-9-13 (18" = 100%)			b ::::::::::::::::::::::::::::::::::::		<u>3</u> 6.0
[\perp			: : : : [
37 —	Boring B-6 terminated at 36.5 feet. Groundwater encountered while drilling at approximately 33									
	feet.									
38 —									1	<u>3</u> 8.0
39 —										
40	WATER LEVELS Hollow Stem Auger					0	50		100	40.0
	▼ WHILE DRILLING									
	▼ AT COMPLETION ▼ AFTER DRILLING □ 2" OD Split Spoon (SPT)					REC	OVER,	r (%)	Sheet 2	2 of 2
	* ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '					l				

			DAT	F STA	ARTED: 6/9/2	2021	BODIN	NG B-7	
	ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO		DAT	E FIN	ISHED: 6/9/2		DRILL: Trailer Drill	NG D-1	
	GEOTECHNICAL SECTION		DRIL	_LER: /IPAN`	Andy Y: Geologic D) Prill	HAMMER: DRILLING METHOD	S. Hallow Stom	Augur
	BORING LOG (US Customary Units)		LOG	GER:	Adam Rich	iter	DIVIDENTION	o. Hollow Stelli	Augui
PROJ	ECT: 120-345G Ponderay Mixed-Use Lot 2		NOT		R: Overcast				
(ft)		.0G	#	<u>~</u>	FIELD		TER CONTENT (%)		(ff)
ЭЕРТН (ft)	TOTAL DEDTIL OF SI	12	밀	PLE	BLOW		IC LIMIT ├──┤ LI .D "N" VALUE <i>─</i> ─	QUID LIMIT	DEPTH (ft)
DEF	TOTAL DEPTH: 31.5'	GRAPHIC LOG	SAMPLE #	SAMPLER	COUNT (Recovery)	FIEL	.D N VALUE		DEF
	DESCRIPTION	GR	S S	0)	, ,,	0	20 4	10 60	0.0
	SILT with sand, brown, damp, stiff. (Undocumented Fill)			\mathcal{F}					
1 —				\exists		::::::			
				\exists					
2 —				\exists					2.0
				낚		17/1 N			
3 —	Hollow Concrete Box encountered.		S-1		5-50/1				
		P 4 4	<u> </u>		(0" = 0%)				
4 —		5 A A		井				/	4.0
		A 4 4		A					
5 —		P 4		B		<i>:</i> :::::			
		2 A		\exists		::::::	::: :::/::::::		6.0
6 —		P 4		\exists					
7 —		P 6 9		H					
′		9 4		旦		12::/			
8 —	Interbedded Sandy SILT and Lean CLAY, brown to light brown with orange mottling, moist, soft to medium stiff.			4	101	: : //: :			8.0
	brown with orange mottling, moist, soft to medium stiff. Contained trace organics. (Undocumented Fill) @7.5' Pocket Penetrometer Values = 0.5-2.0		S-3		1-2-1 (18" = 100%)	• :::::			
9 —	W1.5 1 Ocket 1 elletionieter values = 0.5-2.0			\parallel					
				\mathbb{H}					
10 —									10.0
					1-1-1				
11 —			S-4		(18" = 100%)				
				#		: : : : :			
12 —				H					12.0
				H					
13 —				A					
l				8					14.0
14 —				\exists					<u> </u>
15 —				\exists					
13—	No Recovery - Shelby Sample Fell Out			I					
16 —			S-5						<u>1</u> 6.0
				1		: : : : :			
17 —				H					
				\mathbf{H}					
18 —				\exists					<u>1</u> 8.0
				\forall					
19 —				\sharp		: : : : :			
				#		[::]:::			00.0
20	WATER LEVELS Hollow Stem Auger			<u> </u>		0	50 1	00	20.0
	▼ WHILE DRILLING ■ 3" Shelby Tube					₩ RQD	0 (%) COVERY (%)		
	▼ AT COMPLETION ▼ AFTER DRILLING □ 2" OD Split Spoon (SPT)					L KEC	OVERT (70)	Sheet 1	of 2
	* · · · · -· · · -· · · · · · · · · · ·					I			

	ALLWEST TESTING & ENGINEERING		DAT	E ST/	ARTED: 6/9/2	2021		RORI	NG B-7	
	ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO		DAT	E FIN	IISHED: 6/9/2		DRIL	L: Trailer Drill	ING D-1	
	GEOTECHNICAL SECTION				Andy Y: Geologic D	rill		MER:	20 11 11 21	
			LOG	GER:	Adam Rich		DRIL	LING METHO	DS: Hollow Stem	Augu
DRO	BORING LOG (US Customary Units) JECT: 120-345G Ponderay Mixed-Use Lot 2		WE/		R:Overcast					
I NOC	EGT. 120-0430 F Orideray Mixed-03e Lot 2			LO.						
(ft)		3RAPHIC LOG	#	<u>~</u>	FIELD			CONTENT (%)		(#)
DEPTH (ft)		12	닏	٦Ę	BLOW			ΛΙΤ Ͱ ——【 L	IQUID LIMIT	논
	TOTAL DEPTH: 31.5'	— ₽	SAMPLE #	SAMPLER	COUNT (Recovery)	FIEL	וו ט.	'VALUE ——		DEPTH (ft)
20	DESCRIPTION		S	0	(**************************************	0	2	20	40 60	<u>2</u> 0.0
	Lean CLAY, light brown, lgiht brown, moist, medium stiff. Lab Testing at 20 feet.									
21 —	Sand = 14.2% ∖ Silt / Clay = 85.8%		S-6				:			
	Liquid Limit = 32			1						
22 —	Plastic Limit = 23 Plasticity Index = 9]	A		::4::	4 : :			22.0
	Poorly-graded Fine SAND with silt, gray, wet, medium	_		H		4921				
23 —	dense.			H		/:::::	111			
				H						
24 —			-	Ħ						<u>2</u> 4.0
				H			: : :			
25										
					245		: : :			
26 —			S-7		2-4-5 (18" = 100%)	•				<u>2</u> 6.0
				Щ			: : :			
27 —	· · · · · · · · · · · · · · · · · · ·			\Box						
				H		** :::::::::::::::::::::::::::::::::::	: : :			
28 —				7			: : :			28.0
				#		::::::	: : :			
29 —				#						
				#			: : :			
30 —				H			: : :			30.0
					4.0.7		: : :			
31 —			S-8		4-6-7 (18" = 100%)					
				\perp			: : :			
32 —	Boring B-7 terminated at 31.5 feet. No measurable groundwater encountered.						: : :			<u>3</u> 2.0
							: : :			
33 —	Y									
							: : :			
34 —										<u>3</u> 4.0
							: : :			
35 —										
							: : :			
36 —							: : :			<u>3</u> 6.0
							: : :			
37 —										
							: : :			
38 —							: : :			<u>3</u> 8.0
39 —										
[: : :			
40							: : :			40.0
<u> </u>	WATER LEVELS Hollow Stem Auger					0 	5 (%)	50	100	
	₩ WHILE DRILLING					REC		RY (%)		
	▼ AFTER DRILLING							2 of 2		

	ALLWEST TESTING A ENGINEERING		DAT	E STA	ARTED: 6/9/2					
	ALLWEST TESTING & ENGINEERING HAYDEN, IDAHO		DAT	E FIN	IISHED: 6/9/2	DRILL: Trailer Drill				
	GEOTECHNICAL SECTION				Andy Y: Geologic D		IAMMER: PRILLING METHODS:	Hollow Stem	Augur	
	BORING LOG (US Customary Units)				: Adam Rich R:Overcast	iter	TALLING WE THOSE.	Tionow Ctom	, tagai	
PROJ	ECT: 120-345G Ponderay Mixed-Use Lot 2		NOT		N. Overcasi					
(ft)		-06	#	Ω.	FIELD		R CONTENT (%)	11D 1 1141T	(#)	
ЭЕРТН (ft)	TOTAL DEPTH: 31.5'	GRAPHIC LOG	SAMPLE #	SAMPLER	BLOW		LIMIT ► LIQU	JID LIMIT	DEРТН (ft)	
DE		- d∈	ÄM	SAM	COUNT (Recovery)	- HEED	N VALUE			
	DESCRIPTION	8 X X X	0,	<u> </u>		0	20 40	60	0.0	
	SILT, light brown with gray, orange, and black mottling, moist, stiff. Contains trace organics. (Undocumented Fill)			\exists						
1 —				\exists						
				\exists		:::::::	4: : : : : : : : : : : : :			
2 —				\sharp					2.0	
				#		17: i N				
3 —				Ħ						
				Ħ					4.0	
4 —				A					4.0	
_				A						
5 —	@5' Pocket Penetrometer Values = 1.75-2.0			T						
6 —			S-2		1-3-3 (18" = 100%)	i i∳i i i i			6.0	
7 —				\exists						
		XX		#						
8 —	Interbedded Sandy SILT and Silty CLAY, light brown, moist, stiff. (Undocumented Fill)			4	2-2-3				8.0	
	@7.5' Pocket Penetrometer Value = 1.75		S-3		(18" = 100%)	: : : : : :				
9 —				#		: : : : : :				
				H						
10 —	Lab Testing at 10 feet.			H					10.0	
	Liquid Limit = 30 Plastic Limit = 21		S-4		1-1-1	1::::::				
11 —	Plasticity Index = 9				(18" = 100%)	1				
	Moisture Content = 34%			措					12.0	
12 —				8					12.0	
40				$\frac{1}{2}$::\::::				
13 —				\pm		: : : \ : : : :				
14 —				\exists					14.0	
"				\sharp						
15 —		\longrightarrow				: : : :\:				
	No Recovery - Shelby Sample Fell Out					:::::\:				
16 —			S-5						<u>1</u> 6.0	
						: : : : : . \				
17 —				\exists			\ : : : : : : : : : : : : : : : : : :			
				\exists			\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.			
18 —				\pm			. \		<u>1</u> 8.0	
				#						
19 —				#						
				#					20.0	
20	WATER LEVELS Hollow Stem Auger		<u> </u>	<u> </u>	<u> </u>	0	50 100		20.0	
	WHILE DRILLING ■ 3" Shelby Tube				RQD (%) VERY (%)				
	▼ AT COMPLETION ▼ AFTER DRILLING ▼ OD Split Spoon (SPT)					LECO	V _ I \ I \ (/0)	Sheet 1	of 2	
	* '" 'FIX DIVIETINO					I			_	

			ΠΔΤ	E ST	ARTED: 6/9/2	n21		BC	DIK	СРО	
	ALLWEST TESTING & ENGINEERING				IISHED: 6/9/2		DRII	L: Trailer	Drill	IG B-8	
	HAYDEN, IDAHO				Andy	mill.	HAM	IMER:			
	GEOTECHNICAL SECTION				Y: Geologic D : Adam Rich		DRIL	LING MET	HODS	S: Hollow Stem	Augur
DDO	BORING LOG (US Customary Units)				R:Overcast						
PROL	ECT: 120-345G Ponderay Mixed-Use Lot 2		NOT	E5:							
(ft)		90	#	<u>~</u>	FIELD			CONTENT			(£)
DEPTH (ft)	TOTAL DEPTH 24 C	GRAPHIC LOG	SAMPLE #	SAMPLER	BLOW	l		'VALUE -		QUID LIMIT	DEPTH (
DEI	TOTAL DEPTH: 31.5'	- ₩	AM	YAM.	(Recovery)		וו ט.	VALUE -			DEI
20	DESCRIPTION	GR.	0)		, , ,	0	2	20	40	0 60	20.0
	Poorly-graded Fine SAND, tan-gray, wet, medium dense. Lean CLAY, light brown, wet, soft.	V////			6-11-13			:\: : : : :			
21 —	Poorly-graded Fine SAND, tan-gray, wet, medium dense.		S-6		(18" = 100%)		<i>7</i>	; ? :::::	: : :		
	roony-graded riffe SAND, tari-gray, wet, medium dense.			\perp				/: : : : : : : : : : : : : : : : : : :			
22 —				\exists				 		· · · · · · · · · · · · · · · · · · ·	22.0
				\sharp		1771 N	::/.	:::::	: : :		
23 —				\sharp							
				\Box			/: : : `				04.0
24 —				A		 / .					<u>2</u> 4.0
				A		// : :/: i					
25 —	Silty SAND, gray-brown, wet, loose.			1							
00			S-7		2-2-3 (18" = 100%)	: i √ : : :	: : :	::::::	: : :		26.0
26 —					(10 10070)	::\:::			: : :		
27 —				7		\					
-				H		. : : :	: : :		: : :		
28 —				H		: : : \ : :					28.0
				A		: : :\: :					
29 —				A		: : : : \ :	: : :				
				\mathcal{H}		: : : : :\:					
30 —	Poorly-graded SAND, tan-gray, wet, medium dense.			무		 					30.0
	r cony graded of the tarright, wet, mediani dense.		S-8		4-6-7						
31 —			3-0		(18" = 100%)						
	Boring B-8 terminated at 31.5 feet.			Ш							20.0
32 —	No measureable groundwater encountered.										<u>3</u> 2.0
33 —											
34 —									: : :		34.0
34 —							: : :				Γ
35 —											
36 —											<u>3</u> 6.0
37 —								: : : : : :			
38 —											38.0
								: : : : : :			
39 —											
											40.0
	WATER LEVELS Hollow Stem Auger		I		1	0	5 (0/)	50	10	00	140.0
▼ WHILE DRILLING To 3" Shollby Tube						₩ RQE		RY (%)			
	▼ AT COMPLETION ▼ AFTER DRILLING ■ 3 Shelly Tube ▼ 2" OD Split Spoon (SPT)			J • L	(///		Sheet 2	of 2			
	<u>-</u>					ı				L	


Unified Soil Classification System

MA	JOR DIVISIO	ONS	SYMBOL	TYPICAL NAMES
		CLEAN	GW	Well-Graded Gravel, Gravel-Sand Mixtures.
	GRAVELS	GRAVELS	GP	Poorly-Graded Gravel, Gravel-Sand Mixtures.
	GRAVELS	GRAVELS WITH	GM	Silty Gravel, Gravel-Sand-Silt Mixtures.
COARSE GRAINED		FINES	GC	Clayey Gravel, Gravel-Sand-Clay Mixtures.
SOILS		CLEAN	SW	Well-Graded Sand, Gravelly Sand.
	SANDS	SANDS	SP	Poorly-Graded Sand, Gravelly Sand.
		SANDS WITH	SM	Silty Sand, Sand-Silt Mixtures.
		FINES	SC	Clayey Sand, Sand-Clay Mixtures.
	SILTS AN	ID CLAYS	ML	Inorganic Silt, Silty or Clayey Fine Sand.
	LIQUID LI	MIT LESS	CL	Inorganic Clay of Low to Medium Plasticity, Sandy or Silty Clay.
FINE GRAINED	THAN	1 30%	OL	Organic Silt and Clay of Low Plasticity.
SOILS	SILTS AN	ID CLAYS	МН	Inorganic Silt, Elastic Silt, Micaceous Silt, Fine Sand or Silt.
	4	LIMIT	СН	Inorganic Clay of High Plasticity, Fat Clay.
	GREATER	THAN 50%	ОН	Organic Clay of Medium to High Plasticity.
High	Highly Organic Soils		PT	Peat, Muck and Other Highly Organic Soils.

Appendix C Laboratory Test Results

0

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100		
#4	98		
#8	98		
#16	97		
#30	92		
#50	85		
#100	77		
#200	70		

0

Material Description Sandy SILT Atterberg Limits
LL= NV PL= NP PI= NP Coefficients D₉₀= 0.4724 D₅₀= D₁₀= $D_{85} = 0.2959$ Classification USCS= ML AASHTO = A-4(0)**Remarks** Sampled By: A.Richer Sample Date: 10/26/20 Natural Moisture Content: 25.1%

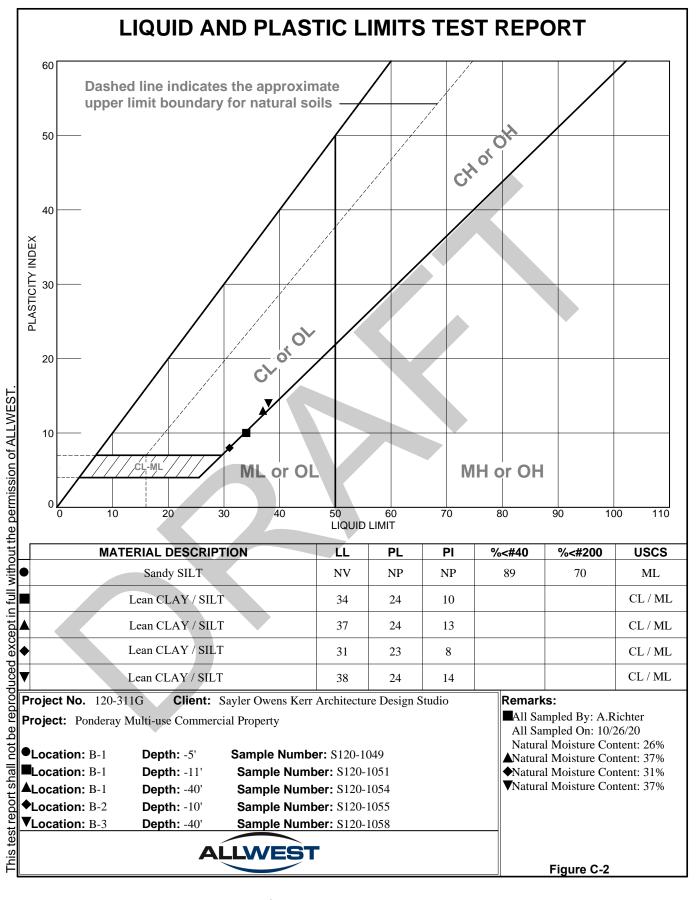
70

Date: 10/30/20

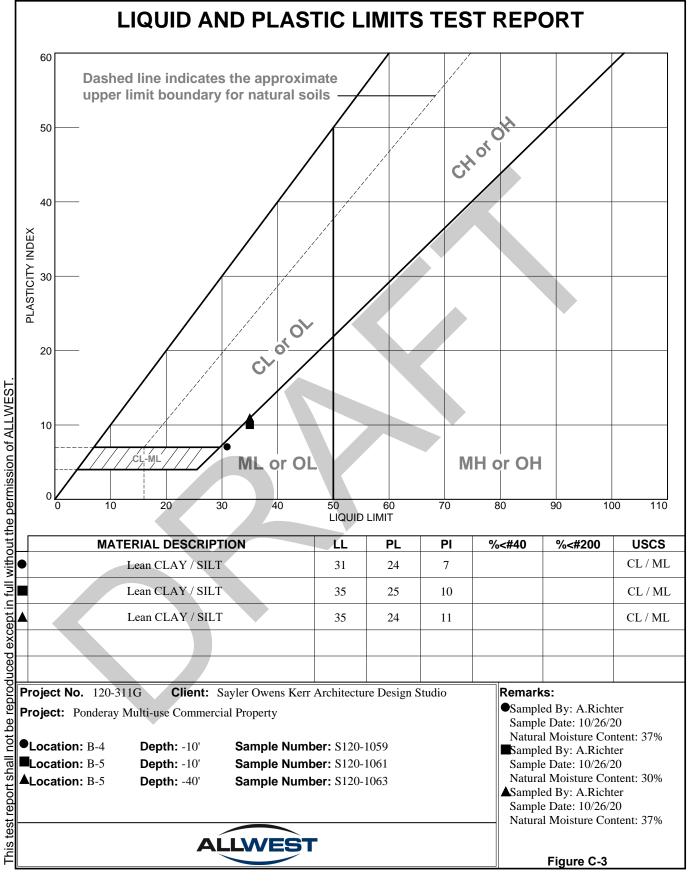
(no specification provided)

0

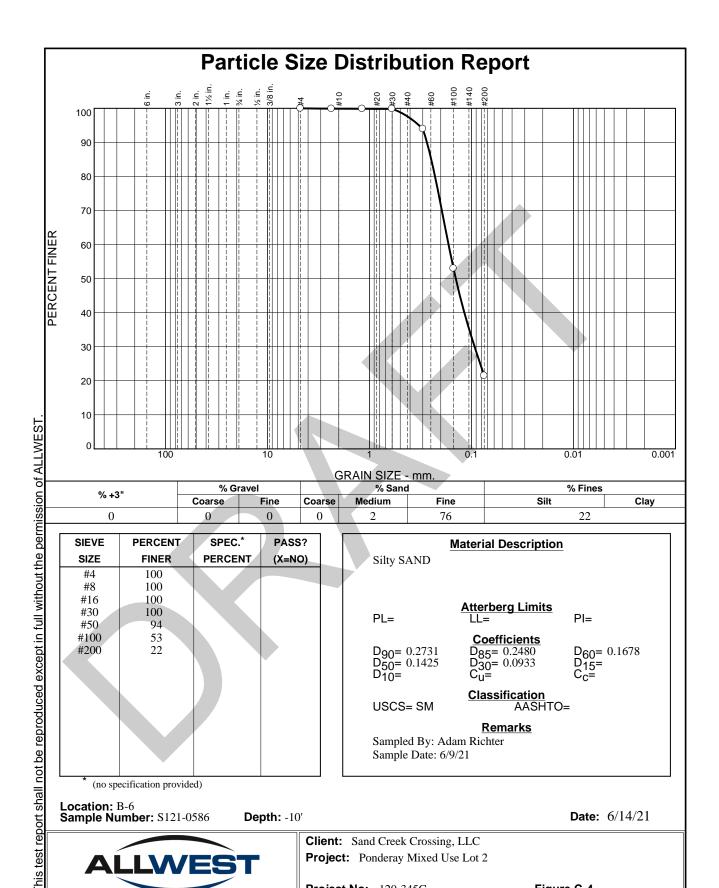
Location: B-1 Sample Number: S120-1049 Depth: -5'



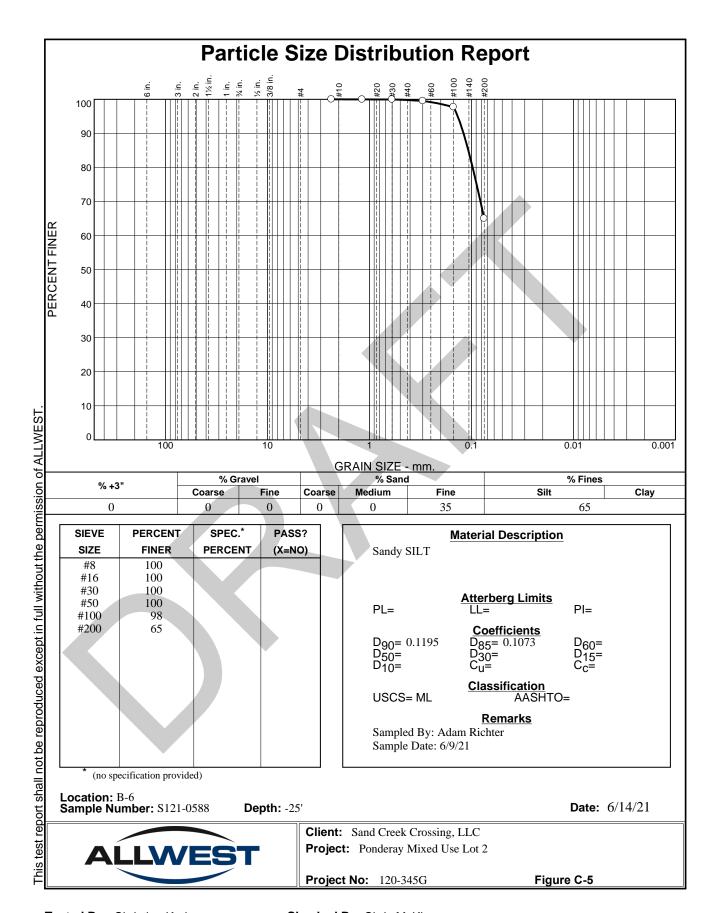
Client: Sayler Owens Kerr Architecture Design Studio **Project:** Ponderay Multi-use Commercial Property

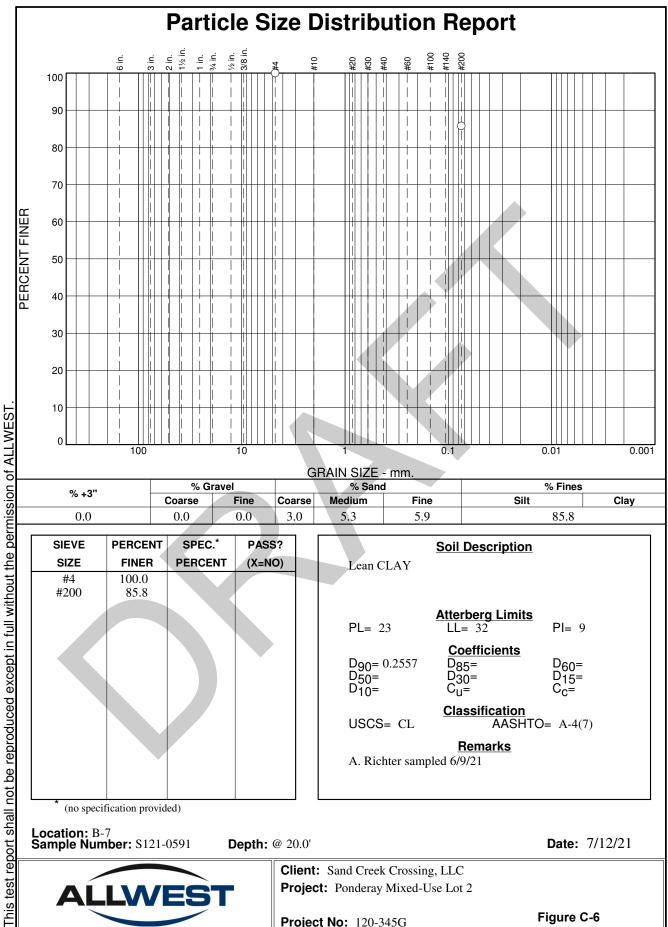

19

Project No: 120-311G Figure C-1


Tested By: Noah White Checked By: Chris McKissen

Tested By: Noah White Checked By: Chris McKissen


Tested By: Noah White Checked By: Chris McKissen


Tested By: Christian Kreiger Checked By: Chris McKissen

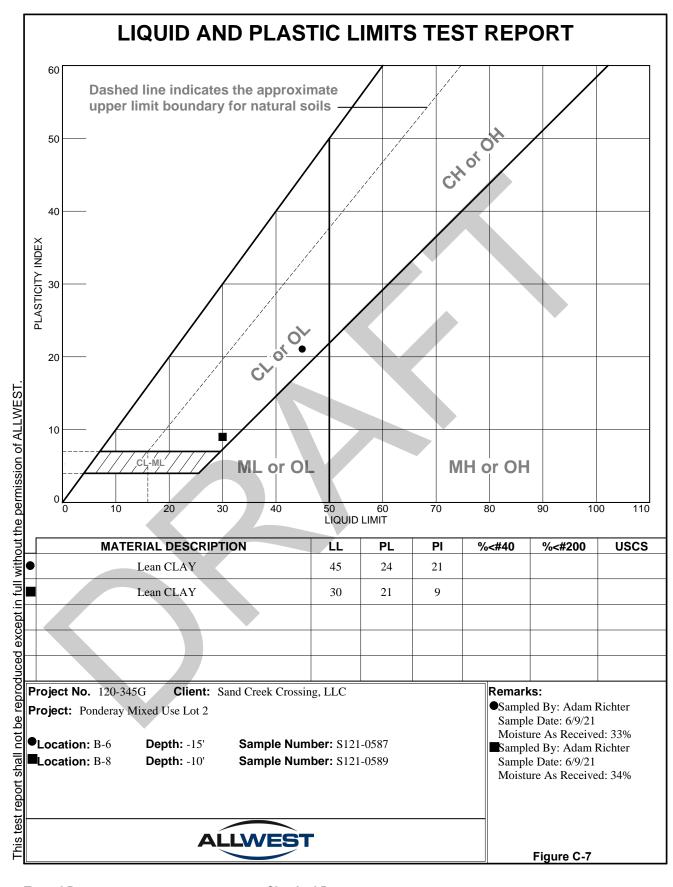
Project No: 120-345G

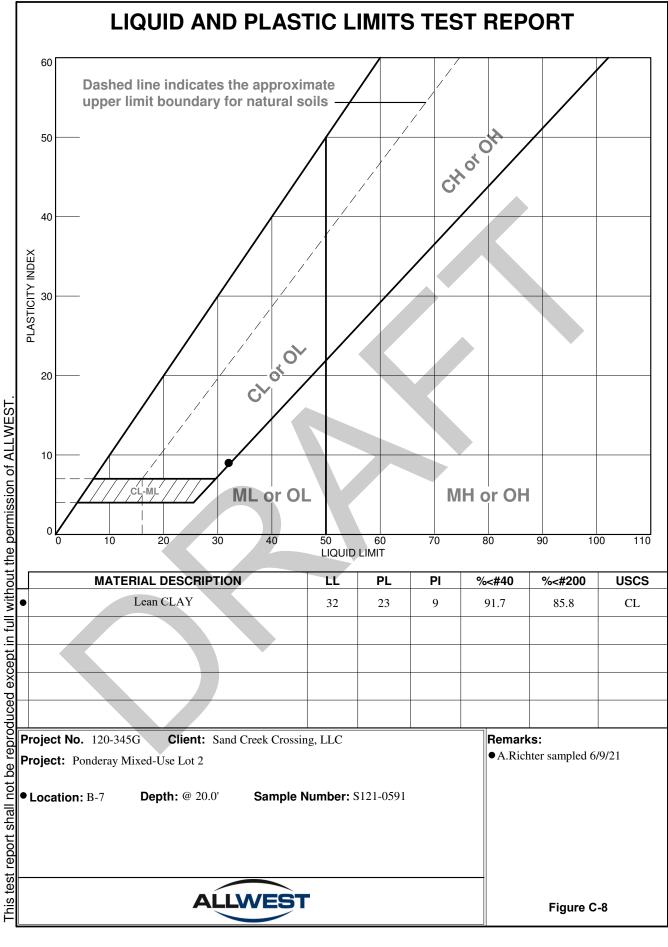
Figure C-4

Tested By: Christian Kreiger Checked By: Chris McKissen

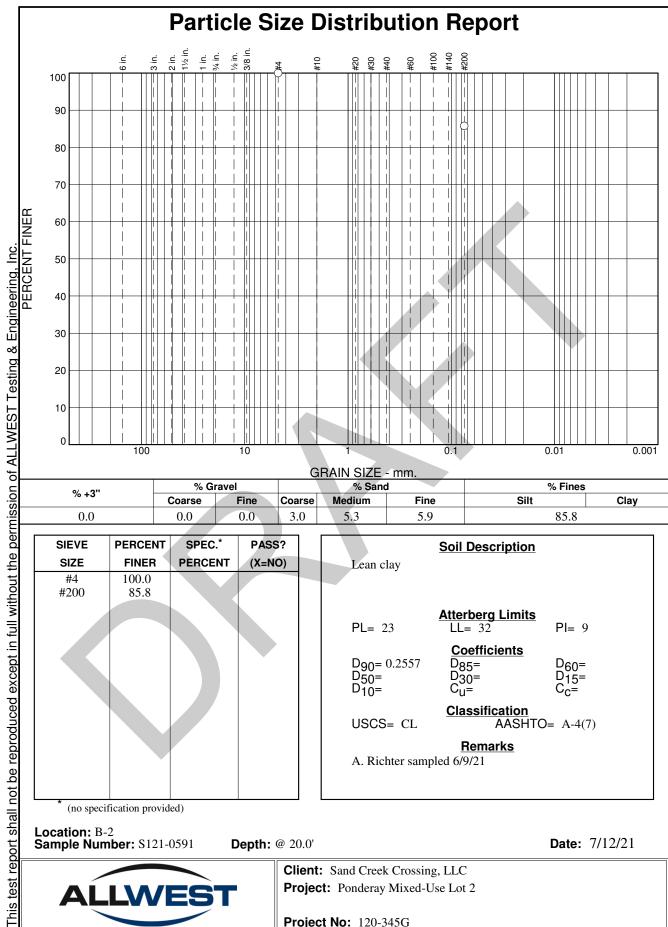
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#200	85.8		
* (no speci	fication provid	led)	

	Cail Dagarin	4: a.m
	Soil Descrip	uon
Lean CLAY		
	Atterberg Lin	mits
PL= 23	LL= 32	PI= 9
	0 411 - 1	
D 0.2557	Coefficien	
D ₉₀ = 0.2557	D ₈₅ = D ₃₀ = C ₁₁ =	D ₆₀ = D ₁₅ = C _c =
D ₅₀ = D ₁₀ =	C=	D15= Co=
210-	.	· ·
	<u>Classificati</u>	
USCS= CL	AA	SHTO= A-4(7)
	Remarks	
A. Richter sam		
71. Richter Sum	5104 017121	


Location: B-7 Sample Number: S121-0591 **Depth:** @ 20.0' **Date:** 7/12/21



Client: Sand Creek Crossing, LLC **Project:** Ponderay Mixed-Use Lot 2


Figure C-6 **Project No:** 120-345G

Tested By: K.Semanko Checked By: D.Schmitz

Tested By: K.Semanko Checked By: D.Schmitz

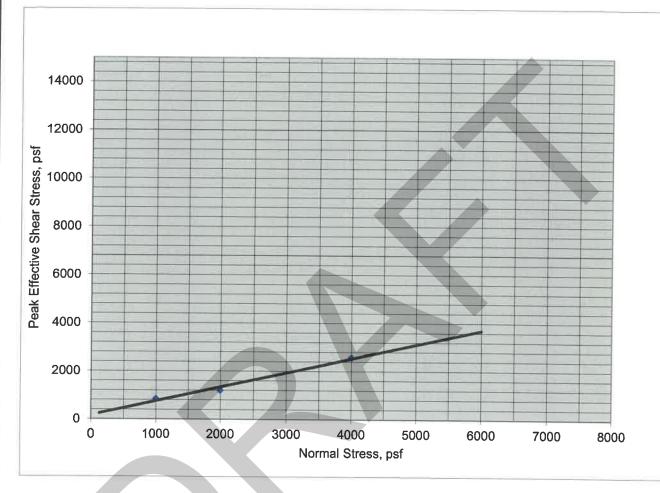
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#200	85.8		
(no specif	fication provid	ed)	

Lean clay	Soil Descript	tion
PL= 23	Atterberg Lir	mits PI= 9
D ₉₀ = 0.2557 D ₅₀ = D ₁₀ =	Coefficient D ₈₅ = D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= CL	Classification AAS	on SHTO= A-4(7)
A. Richter samp	Remarks pled 6/9/21	

Location: B-2 Sample Number: S121-0591 **Depth:** @ 20.0' Date: 7/12/21

Client: Sand Creek Crossing, LLC **Project:** Ponderay Mixed-Use Lot 2

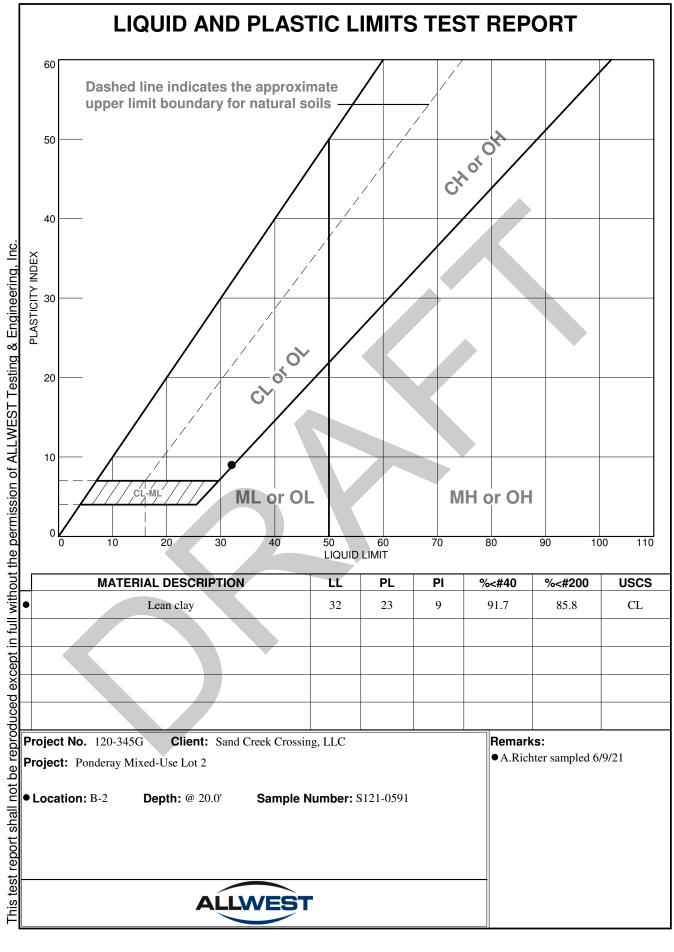
Project No: 120-345G


Tested By: K.Semanko Checked By: D.Schmitz

Direct Shear AASHTO T-236

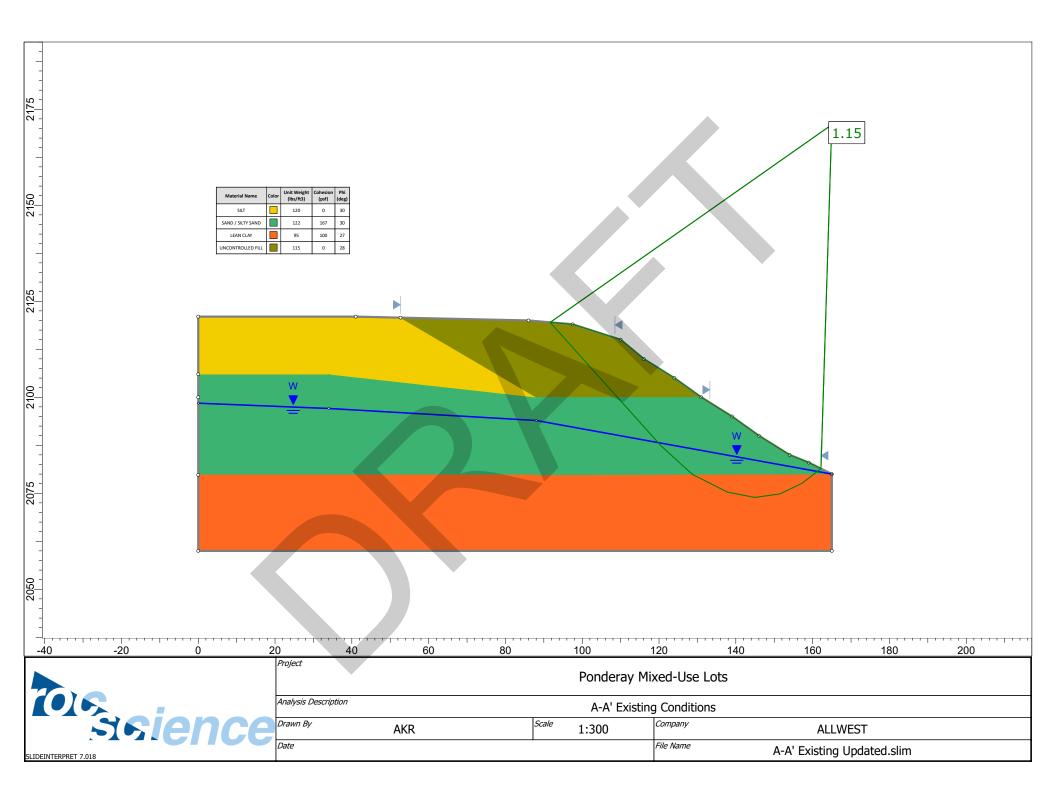
Project: Ponderay Mixed-Use Lot 2 Client: Sand Creek Crossing, LLC Date Tested: 7/8/21 & 7/9/21 Tested By: D. Schmitz

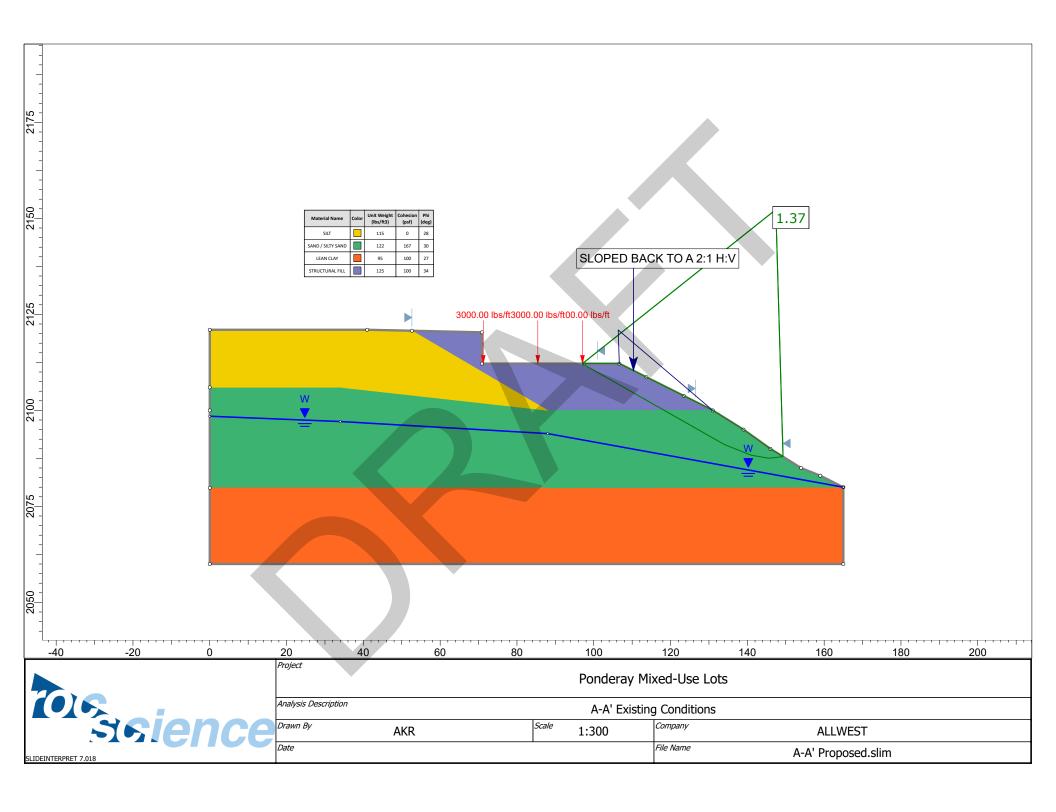
Project No.: 120-345G Sample No.: S121-0591 Sample Location: B-2 @ 20.0'


Classification: Lean clay

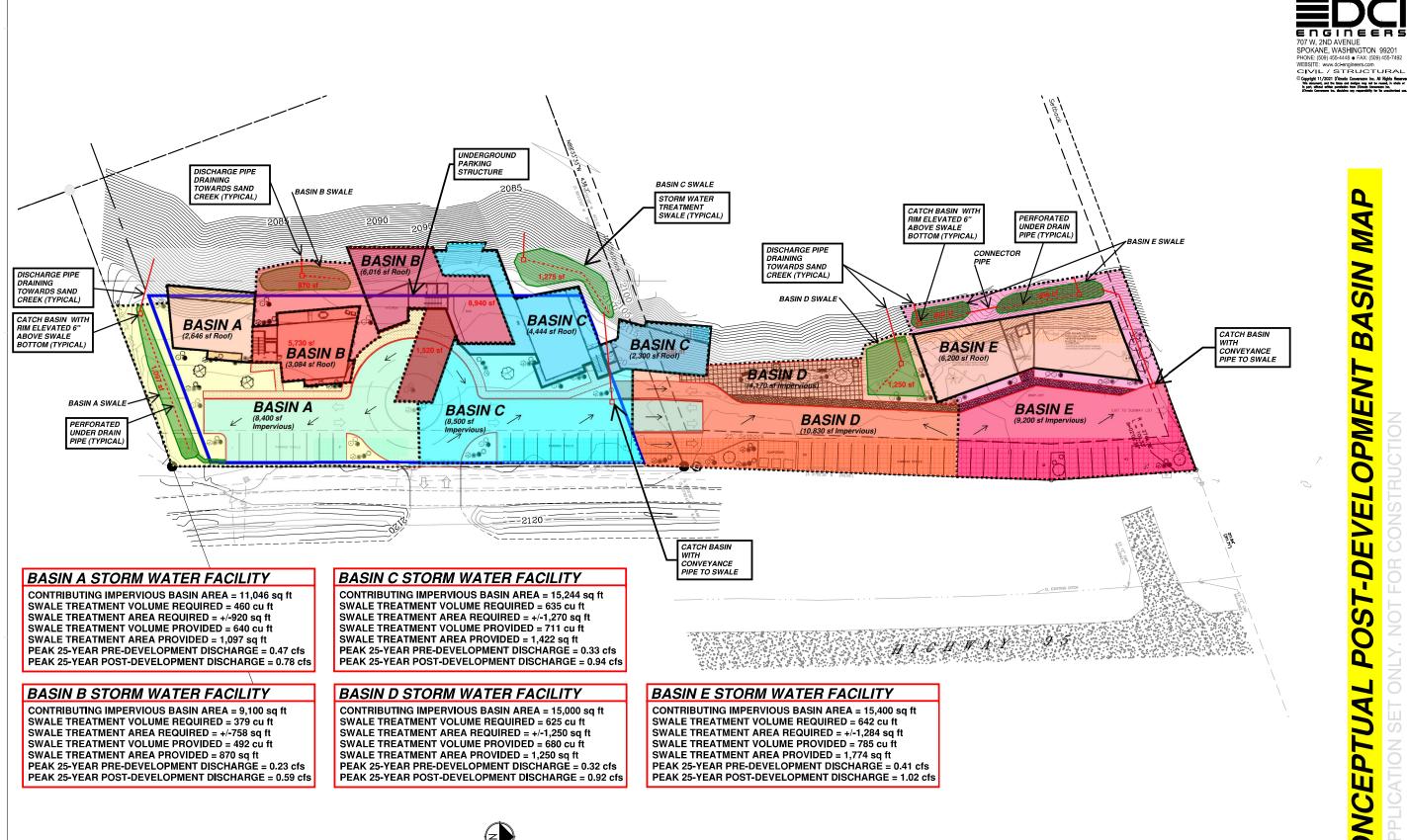
Angle of Internal Friction (Ø'):	30
Cohesion Intercept (psf):	167
Dry Unit Weight (pcf)	95
Water Content (%)	29.1
Shear Box Diameter (inches)	2.4

Reviewed by:





Tested By: K.Semanko Checked By: D.Schmitz


Appendix D Slope Stability Analyses

CONTRACTOR NOTE

PROGRESS PRINT (NOT FOR CONSTRUCTION) THESE DRAWINGS HAVE BEEN RELEASED AT THE REQUEST OF THE CLIENT AND ARE NOT INTENDED FOR THE PURPOSES OF BIDDING, PERMITTING, OR CONSTRUCTION.

ALL EXISTING UTILITIES SHOWN ON PLANS ARE TO BE VERIFIED HORIZONTALLY AND VERTICALLY PRIOR TO ANY CONSTRUCTION. ALL EXISTING FEATURES INCLUDING BURIED UTILITIES ARE SHOWN AS INDICATED ON RECORD MAPS AND SURVEYS FURNISHED BY OTHERS. WE ASSUME NO LIABILITY FOR THE ACCURACY OF THOSE RECORDS AND SURVEYS. CONTACT THE UTILITY OWNER/AGENCY FOR THE FINAL LOCATION OF EXISTING UTILITIES IN AREAS CRITICAL TO CONSTRUCTION.

CALL TWO BUSINESS DAYS BEFORE YOU DIG

RIDGE

3 JAN 2022

A

P

Ш

E S

CIVIL

208.265.9160

DRAWN BY:

വ

RIDO

REEK

ANDC

S

design studio E STREET SANDPOINT

www.sokdesigns.com INFO@SOKDESIGNS.C

SAND CREEK

Stormwater Facilities and Detention Basin Design

Bio-Infiltration Swale with Off-Site Discharge

Date: 1/7/2022 Job No.: 21042-0088

Arch. Name:

Project: Sand Creek Ridge

Description and Assumptions:

City of Ponderay

(See Project Location Map)
Design Frequency: 25 year

Basin Area < 10 acres, therefore use Rational Formula

$Q = C \times I \times A$	where	Q = Runoff in cubic feet per second C = Runoff Coefficient
		I = Rainfall Intensity in inches per hour A = Contributing Area in acres

1 Determine Weighted Runoff Coefficient, C and Area, A

 Sub-Area:
 Basin A Pre-Development

 Total Drainage Area (A):
 16,889
 s.f.
 0.3877
 ac.

 Total PGIS:
 s.f.
 ac.

Surface Type	Area (s.f.)	Area (ac.)	С	C*Area in acres
Parking/Driveway (PGIS)	-	-	0.90	-
Sidewalk (PGIS)		-	0.90	-
Landscaping	12,889	0.30	0.30	0.09
Roof (NPGIS)	-	-	0.90	-
Gravel Parking Area	4,000	0.09	0.80	0.07
TOTAL	16,889	0.39		0.16

2 Determine Rainfall Intensity, I

Duration (in minutes) is based on the Time of Concentration, Tc

Datation (in minutes) is based on the finite of concentration, re

Reach 1: Overland Flow

where

Tc = Time of Concentration in minutes of the longest route that the flow will take

L = Length in feet

 $Tc = \frac{L}{K * \sqrt{(S)}}$

K = Ground Cover Coefficient S = Average Slope in ft/ft

Time of Concentration:

3.93 minutes

Tc shall not be less than 5 minutes, therefore:

Time of Concentration: 5.00 minutes

Intensity is calculated as:

$$I = \frac{m}{Tc^n}$$

I = 2.90 in./hr.

3 Determine Peak Discharge, Q

Peak 25 yr Discharge = Q25 = CIA = 0.47 c.f.s.

4 Determine Treatment Volume Required by Basin

Total PGIS Area: - sf

Required Volume Vs. Provided Volume

Treatment Method:	1133A	1815A	Equal to first 1/2" of runoff		
Required Treatment Volu	me from Ba	asin:		-	cu. ft.
Bioinfiltration Treatment	Volume Pro	ovided:		640	cu. ft.

Bioinfiltration Area Bottom Width:
Bioinfiltration Area Bottom Length:
Bioinfiltration Area Bottom Length:
Bioinfiltration Treatment Depth:

5ide Slope (X:1):

10.0 ft.

Width at treatment depth:
11.0 ft.

Length at treatment depth:
113.0 ft

(Bottom Elevation to Rim Elevation)

Bioinfiltration Bottom Area:	1,097	sf
Bioinfiltration Top Area:	1,466	sf

Is the Bioinfiltration area large enough to hold the required treatment volume?

Stormwater Facilities and Detention Basin Design

Bio-Infiltration Swale with Off-Site Discharge

Date: 1/7/2022 Job No.: 21042-0088

Arch. Name:

Project: **Sand Creek Ridge**

Description and Assumptions:

City of Ponderay

(See Project Location Map) Design Frequency: 25 year

Basin Area < 10 acres, therefore use Rational Formula

$Q = C \times I \times A$	where	Q = Runoff in cubic feet per second
		C = Runoff Coefficient
		I = Rainfall Intensity in inches per hour
		A = Contributing Area in acres

1 Determine Weighted Runoff Coefficient, C and Area, A

Basin B Pre-Development

Total Drainage Area (A): 11,600 s.f. 0.2663 ac. Total PGIS: - s.f. ac.

Surface Type	Area (s.f.)	Area (ac.)	С	C*Area in acres
Parking/Driveway (PGIS)	-	-	0.90	-
Sidewalk (PGIS)		-	0.90	-
Landscaping	11,600	0.27	0.30	0.08
Roof (NPGIS)	-	-	0.90	-
Gravel Parking Area	-	-	0.80	-
TOTAL	11,600	0.27		0.08

Weighted Runoff Coefficient (C) = (sum CA)/(sumA) =	0.30

2 Determine Rainfall Intensity, I

Duration (in minutes) is based on the Time of Concentration, Tc

Reach 1: Overland Flow where Tc = Time of Concentration in minutes of the longest route that the flow will take

L = Length in feet

 $Tc = \frac{L}{K * \sqrt{(S)}}$ K = Ground Cover Coefficient S = Average Slope in ft/ft

> 100 0.01 420

Time of Concentration: 2.38 minutes

Tc shall not be less than 5 minutes, therefore:

Time of Concentration: 5.00 minutes

Intensity is calculated as:

2.90 in./hr.

3 Determine Peak Discharge, Q

Peak 25 yr Discharge = Q25 = CIA =

4 Determine Treatment Volume Required by Basin

Total PGIS Area: - sf

Required Volume Vs. Provided Volume

Treatment Method:	1133A	1815A	Equal to first 1/2" of runoff		
Required Treatment Volume from Basin:			-	cu. ft.	
Bioinfiltration Treatment Volume Provided:			492	cu. ft.	

Bioinfiltration Area Bottom Width:

Bioinfiltration Area Bottom Length:

Bioinfiltration Area Bottom Length:

Bioinfiltration Treatment Depth:

Color by the color of the colo

Bioinfiltration Bottom Area:	870 sf
Bioinfiltration Top Area:	1,103 sf

Is the Bioinfiltration area large enough to hold the required treatment volume?

Stormwater Facilities and Detention Basin Design

Bio-Infiltration Swale with Off-Site Discharge

Date: 1/7/2022 Job No.: 21042-0088

Arch. Name:

Project: Sand Creek Ridge

Description and Assumptions:

City of Ponderay

(See Project Location Map)
Design Frequency: 25 year

Basin Area < 10 acres, therefore use Rational Formula

$Q = C \times I \times A$	where	Q = Runoff in cubic feet per second	
		C = Runoff Coefficient	
		I = Rainfall Intensity in inches per hour	
		A = Contributing Area in acres	

1 Determine Weighted Runoff Coefficient, C and Area, A

Sub-Area: Basin C Pre-Development

Total Drainage Area (A): 16,494 s.f. 0.3787 ac.

Total PGIS: - s.f. - ac.

Surface Type	Area (s.f.)	Area (ac.)	С	C*Area in acres
Parking/Driveway (PGIS)	-	-	0.90	-
Sidewalk (PGIS)		-	0.90	-
Landscaping	16,494	0.38	0.30	0.11
Roof (NPGIS)	-	-	0.90	-
Gravel Parking Area	-	-	0.80	-
TOTAL	16,494	0.38		0.11

Weighted Runoff Coefficient (C) = (sum CA)/(sumA) =	0.30

2 Determine Rainfall Intensity, I

Duration (in minutes) is based on the Time of Concentration, Tc

Reach 1: Overland Flow where L Tc = Time of Concentration in minutes of the longest route that the flow will take L = Length in feet

 $Tc = \frac{L}{K * \sqrt{(S)}}$ K = Ground Cover Coefficient S = Average Slope in ft/ft

L (ft) K S 100 420 0.01

Time of Concentration: 2.38 minutes

Tc shall not be less than 5 minutes, therefore:

Time of Concentration: 5.00 minutes

Intensity is calculated as: $I = \frac{m}{T_0}$

m n

I = 2.90 in./hr.

4 Determine Treatment Volume Required by Basin

Total PGIS Area: - st

Required Volume Vs. Provided Volume

Treatment Method:	1133A	1815A	Equal to first 1/2" of runoff		
Required Treatment Vo	olume from E	Basin:		-	cu. ft.
Bioinfiltration Treatme	nt Volume P	rovided:		711	cu. ft.

Bioinfiltration Area Bottom Width: 15.9 ft. Width at treatment depth: 18.9 ft
Bioinfiltration Area Bottom Length: 80 ft. Length at treatment depth: 83.0 ft

Bioinfiltration Treatment Depth: 0.5 ft. (Bottom Elevation to Rim Elevation)

Side Slope (X:1):

Bioinfiltration Bottom Area:	1,275 sf
Bioinfiltration Top Area:	1,572 sf

Is the Bioinfiltration area large enough to hold the required treatment volume?

Bio-Infiltration Swale with Off-Site Discharge

Date: 1/7/2022 Job No.: 21042-0088

Arch. Name:

Project: Sand Creek Ridge

Description and Assumptions:

City of Ponderay

(See Project Location Map)
Design Frequency: 25 year

Basin Area < 10 acres, therefore use Rational Formula

$Q = C \times I \times A$	where	Q = Runoff in cubic feet per second
		C = Runoff Coefficient
		I = Rainfall Intensity in inches per hour
		A = Contributing Area in acres

1 Determine Weighted Runoff Coefficient, C and Area, A

Sub-Area: Basin D Pre-Development

Total Drainage Area (A): 15,900 s.f. 0.3650 ac.

Total PGIS: - s.f. - ac.

Surface Type	Area (s.f.)	Area (ac.)	С	C*Area in acres
Parking/Driveway (PGIS)	-	-	0.90	-
Sidewalk (PGIS)		-	0.90	-
Landscaping	15,900	0.37	0.30	0.11
Roof (NPGIS)	-	-	0.90	-
Gravel Parking Area	-	-	0.80	-
TOTAL	15,900	0.37		0.11

Tc = Time of Concentration in minutes of the longest route that the flow will take

Weighted Runoff Coefficient (C) = (sum CA)/(sumA) =	0.30

2 Determine Rainfall Intensity, I

Duration (in minutes) is based on the Time of Concentration, Tc

Reach 1: Overland Flow where

 $Tc = rac{L}{K*\sqrt(S)}$ L = Length in feet K = Ground Cover Coefficient S = Average Slope in ft/ft

L (ft) K S 200 420 0.01

Time of Concentration: 4.76 minutes

Tc shall not be less than 5 minutes, therefore:

Time of Concentration: 5.00 minutes

Intensity is calculated as: $I = \frac{m}{T_c}$

m n 6.8 0.53

Peak 25 yr Discharge = Q25 = CIA =	0.32 c.f.s.
------------------------------------	-------------

4 Determine Treatment Volume Required by Basin

Total PGIS Area: - sf

Required Volume Vs. Provided Volume

Treatment Method:	1133A	1815A	Equal to first 1/2" of runoff		
Required Treatment V	olume from B	asin:		-	cu. ft.
Bioinfiltration Treatme	ent Volume Pr	ovided:		377	cu. ft.

Bioinfiltration Area Bottom Width: 19.2 ft. Width at treatment depth: 22.2 ft
Bioinfiltration Area Bottom Length: 35 ft. Length at treatment depth: 38.0 ft

Bioinfiltration Treatment Depth: 0.5 ft. (Bottom Elevation to Rim Elevation)

Side Slope (X:1):

Bioinfiltration Bottom Area: 670 sf
Bioinfiltration Top Area: 842 sf

Is the Bioinfiltration area large enough to hold the required treatment volume?

Bio-Infiltration Swale with Off-Site Discharge

Date: 1/7/2022 Job No.: 21042-0088

Arch. Name:

Project: Sand Creek Ridge

Description and Assumptions:

City of Ponderay

(See Project Location Map)
Design Frequency: 25 year

Basin Area < 10 acres, therefore use Rational Formula

$Q = C \times I \times A$	where	Q = Runoff in cubic feet per second
		C = Runoff Coefficient
		I = Rainfall Intensity in inches per hour
		A = Contributing Area in acres

1 Determine Weighted Runoff Coefficient, C and Area, A

Sub-Area: Basin E Pre-Development

Total Drainage Area (A): 20,400 s.f. 0.4683 ac. Total PGIS: - s.f. - ac.

Surface Type	Area (s.f.)	Area (ac.)	С	C*Area in acres
Parking/Driveway (PGIS)	-	-	0.90	-
Sidewalk (PGIS)		-	0.90	-
Landscaping	20,400	0.47	0.30	0.14
Roof (NPGIS)	-	-	0.90	-
Gravel Parking Area	-	-	0.80	-
TOTAL	20.400	0.47		0.14

Weighted Runoff Coefficient (C) = (sum CA)/(sumA) =	0.30

2 Determine Rainfall Intensity, I

Duration (in minutes) is based on the Time of Concentration, Tc

Reach 1: Overland Flow where Tc = Time of Concentration in minutes of the longest route that the flow will take

 $Tc = \frac{L}{K * \sqrt{(S)}}$ L = Length in feet K = Ground Cover Coefficient S = Average Slope in ft/ft

> L (ft) K S 200 420 0.01

Time of Concentration: 4.76 minutes

Tc shall not be less than 5 minutes, therefore:

Time of Concentration: 5.00 minutes

Intensity is calculated as: $I = \frac{m}{T_C}$

m n 6.8 0.53

3	Determine	Peak Discharge,	O
•	Determine	r cak Discharge,	v

Peak 25 yr Discharge = Q25 = CIA =	0.41 c.f.s.
------------------------------------	-------------

4 Determine Treatment Volume Required by Basin

Total PGIS Area: - sf

Required Volume Vs. Provided Volume

Treatment Method:	O 1133A	1815A	Equal to first 1/2" of runoff		
Required Treatment Vo	lume from B	asin:		-	cu. ft.
Bioinfiltration Treatmer	nt Volume Pr	ovided:		785	cu. ft.

Bioinfiltration Area Bottom Width: 11.4 ft. Width at treatment depth: 14.4 ft
Bioinfiltration Area Bottom Length: 120 ft. Length at treatment depth: 123.0 ft

Bioinfiltration Treatment Depth: 0.5 ft. (Bottom Elevation to Rim Elevation)

Side Slope (X:1):

Bioinfiltration Bottom Area:	1,370 sf
Bioinfiltration Top Area:	1,774 sf

Is the Bioinfiltration area large enough to hold the required treatment volume?

Bio-Infiltration Swale with Off-Site Discharge

Date: 1/7/2022 Job No.: 21042-0088

Arch. Name:

Project: Sand Creek Ridge

Description and Assumptions:

City of Ponderay

(See Project Location Map)
Design Frequency: 25 year

Basin Area < 10 acres, therefore use Rational Formula

$Q = C \times I \times A$	where	Q = Runoff in cubic feet per second C = Runoff Coefficient
		I = Rainfall Intensity in inches per hour A = Contributing Area in acres

1 Determine Weighted Runoff Coefficient, C and Area, A

Sub-Area: Basin A Post-Development

Total Drainage Area (A): 16,889 s.f. 0.3877 ac.
Total PGIS: 11,046 s.f. 0.25 ac.

Surface Type	Area (s.f.)	Area (ac.)	С	C*Area in acres
Parking/Driveway (PGIS)	8,400	0.19	0.90	0.17
Sidewalk (PGIS)		-	0.90	-
Landscaping	5,843	0.13	0.30	0.04
Roof (NPGIS)	2,646	0.06	0.90	0.05
		-		-
TOTAL	16,889	0.39		0.27

Tc = Time of Concentration in minutes of the longest route that the flow will take

2 Determine Rainfall Intensity, I

Reach 1: Overland Flow

Duration (in minutes) is based on the Time of Concentration, Tc

L = Length in feet

 $Tc = \frac{L}{K * \sqrt{(S)}}$ K = Ground Cover Coefficient S = Average Slope in ft/ft

where

Time of Concentration: 2.34 minutes

Tc shall not be less than 5 minutes, therefore:

Intensity is calculated as: $I = \frac{m}{T_{col}}$

I = 2.90 in./hr.

3 Determine Peak Discharge, Q

Peak 25 yr Discharge = Q25 = CIA = 0.78 c.f.s.

4 Detention Basin Design using the Bowstring Method

Time Increment: 5 minutes
Time of Concentration: 5.00 minutes

Single Depth Drywell(s)

Desired Outflow:

0.47 cfs 0.692

Double Depth Drywell(s)

Runoff Coefficient: Area: 0.39 acres

Time (minutes)	Time (seconds)	Intensity (in/hr)	Q (cfs)	Volume In (cu.ft.)	Volume Out (cu.ft.)	Storage (cu.ft.)
0	0	-	-	-	-	-
2	120	2.90	0.78	101	83	18
5	300	2.90	0.78	241	208	33
10	600	2.01	0.54	328	415	(87)
15	900	1.62	0.43	395	623	(228)
20	1200	1.39	0.37	451	831	(380)
25	1500	1.23	0.33	500	1,039	(538)
30	1800	1.12	0.30	545	1,246	(702)
35	2100	1.03	0.28	585	1,454	(869)
40	2400	0.96	0.26	623	1,662	(1,039)
45	2700	0.90	0.24	658	1,870	(1,212)
50	3000	0.86	0.23	691	2,077	(1,386)
55	3300	0.81	0.22	722	2,285	(1,563)
60	3600	0.78	0.21	752	2,493	(1,740)
65	3900	0.74	0.20	781	2,700	(1,919)
70	4200	0.72	0.19	809	2,908	(2,100)
75	4500	0.69	0.19	835	3,116	(2,281)
80	4800	0.67	0.18	861	3,324	(2,463)
85	5100	0.65	0.17	886	3,531	(2,646)
90	5400	0.63	0.17	910	3,739	(2,830)
95	5700	0.61	0.16	933	3,947	(3,014)
100	6000	0.59	0.16	956	4,155	(3,199)

^{*}Check formula depending on t < or > Tc

5 Determine Treatment Volume Required by Basin

Total PGIS Area: 11,046 sf

Required Volume Vs. Provided Volume

Treatment Method:	1133A	1815A	Equal to first 1/2" of runoff	
Required Treatment V	460 cu.ft.			
Bioinfiltration Treatme	ent Volume Pr	ovided:		640 cu. ft.

Bioinfiltration Area Bottom Width: Bioinfiltration Area Bottom Length: Bioinfiltration Treatment Depth:

10.0 ft. 110 ft. 0.5 ft. 3

Width at treatment depth: Length at treatment depth:

(Bottom Elevation to Rim Elevation)

Side Slope (X:1):

Bioinfiltration Bottom Area: Bioinfiltration Top Area:

1,097 sf 1,466 sf

Is the Bioinfiltration area large enough to hold the required treatment volume?

ОК

13.0 ft

113.0 ft

Bio-Infiltration Swale with Off-Site Discharge

Date: 1/7/2022 Job No.: 21042-0088

Arch. Name:

Project: Sand Creek Ridge

Description and Assumptions:

City of Ponderay

(See Project Location Map)
Design Frequency: 25 year

Basin Area < 10 acres, therefore use Rational Formula

$Q = C \times I \times A$	where	Q = Runoff in cubic feet per second
		C = Runoff Coefficient
		I = Rainfall Intensity in inches per hour
		A = Contributing Area in acres

1 Determine Weighted Runoff Coefficient, C and Area, A

Sub-Area: Basin B Post-Development

Total Drainage Area (A): 11,600 s.f. 0.2663 ac.
Total PGIS: 9,100 s.f. 0.21 ac.

Surface Type	Area (s.f.)	Area (ac.)	С	C*Area in acres
Parking/Driveway (PGIS)	-	-	0.90	-
Sidewalk (PGIS)		-	0.90	-
Landscaping	2,500	0.06	0.30	0.02
Roof (NPGIS)	9,100	0.21	0.90	0.19
		-		-
TOTAL	11,600	0.27		0.21

Weighted Runoff Coefficient (C) = (sum CA)/(sumA) =	0.77

2 Determine Rainfall Intensity, I

Duration (in minutes) is based on the Time of Concentration, Tc

Reach 1: Overland Flow where Tc = Time of Concentration in minutes of the longest route that the flow will take

 $Tc = rac{L}{K * \sqrt(S)}$ L = Length in feet

K = Ground Cover Coefficient
S = Average Slope in ft/ft

L (ft) K S 281 1200 0.01

Time of Concentration: 2.34 minutes

Tc shall not be less than 5 minutes, therefore:

Time of Concentration: 5.00 minutes

Intensity is calculated as: $I = \frac{m}{T_C}$

m n 6.8 0.53

Peak 25 yr Discharge = Q25 = CIA = 0.59 c.f.s.

4 Detention Basin Design using the Bowstring Method

Time Increment: 5 minutes
Time of Concentration: 5.00 minutes
Desired Outflow: 0.23 cfs

Runoff Coefficient: 0.771 Area: 0.27 acres

Single Depth Drywell(s)
Double Depth Drywell(s)

Time	Time	Intensity	Q	Volume In	Volume Out	Storage
(minutes)	(seconds)	(in/hr)	(cfs)	(cu.ft.)	(cu.ft.)	(cu.ft.)
0	0	-	-	-	-	-
2	120	2.90	0.59	74	92	(18)
5	300	2.90	0.59	181	231	(50)
10	600	2.01	0.41	249	462	(213)
15	900	1.62	0.33	301	694	(393)
20	1200	1.39	0.29	344	925	(581)
25	1500	1.23	0.25	381	1,156	(775)
30	1800	1.12	0.23	415	1,387	(972)
35	2100	1.03	0.21	446	1,618	(1,172)
40	2400	0.96	0.20	475	1,850	(1,375)
45	2700	0.90	0.19	502	2,081	(1,579)
50	3000	0.86	0.18	527	2,312	(1,785)
55	3300	0.81	0.17	551	2,543	(1,992)
60	3600	0.78	0.16	574	2,774	(2,200)
65	3900	0.74	0.15	596	3,006	(2,409)
70	4200	0.72	0.15	617	3,237	(2,619)
75	4500	0.69	0.14	638	3,468	(2,830)
80	4800	0.67	0.14	657	3,699	(3,042)
85	5100	0.65	0.13	676	3,931	(3,254)
90	5400	0.63	0.13	695	4,162	(3,467)
95	5700	0.61	0.12	713	4,393	(3,680)

 $^{100 \}qquad \qquad 6000$ *Check formula depending on t < or > Tc

5 Determine Treatment Volume Required by Basin

Total PGIS Area: 9,100 sf

Required Volume Vs. Provided Volume

Treatment Method:	1133A	1815A	Equal to first 1/2" of runoff		
Required Treatment Volume from Basin: 379 cu. ft.					
Bioinfiltration Treatment Volume Provided: 492 cu. ft.					

Bioinfiltration Area Bottom Width:
Bioinfiltration Area Bottom Length:
Bioinfiltration Area Bottom Length:
Control of the street street the street street that the street street street the street street street the street street

0.12

730

4,624

(3,894)

Side Slope (X:1):

U.S Tt. (Bottom Elevation to Rim Elevation Side Slope (X:1):

0.59

Bioinfiltration Bottom Area: 870 sf
Bioinfiltration Top Area: 1,103 sf

Is the Bioinfiltration area large enough to hold the required treatment volume?

Bio-Infiltration Swale with Off-Site Discharge

Date: 1/7/2022 Job No.: 21042-0088

Arch. Name:

Project: Sand Creek Ridge

Description and Assumptions:

City of Ponderay

(See Project Location Map)
Design Frequency: 25 year

Basin Area < 10 acres, therefore use Rational Formula

$Q = C \times I \times A$	where	Q = Runoff in cubic feet per second
		C = Runoff Coefficient
		I = Rainfall Intensity in inches per hour
		A = Contributing Area in acres

1 Determine Weighted Runoff Coefficient, C and Area, A

Sub-Area: Basin C Post-Development

Total Drainage Area (A): 16,494 s.f. 0.3787 ac.
Total PGIS: 15,244 s.f. 0.35 ac.

Surface Type	Area (s.f.)	Area (ac.)	С	C*Area in acres
Parking/Driveway (PGIS)	8,500	0.20	0.90	0.18
Sidewalk (PGIS)		-	0.90	-
Landscaping	1,250	0.03	0.30	0.01
Roof (NPGIS)	6,744	0.15	0.90	0.14
		-		-
TOTAL	16,494	0.38		0.32

Weighted Runoff Coefficient (C) = (sum CA)/(sumA) =	0.85

2 Determine Rainfall Intensity, I

Duration (in minutes) is based on the Time of Concentration, Tc

burdion (in minutes) is based on the finite of concentration, to

Reach 1: Overland Flow where Tc = Time of Concentration in minutes of the longest route that the flow will take

 $TC = \frac{L}{K - L(C)}$ L = Length in feet K = Ground Cover Coefficient

S = Average Slope in ft/ft $L (ft) \hspace{1cm} K \hspace{1cm} S$

1200

0.01

Time of Concentration: 2.50 minutes

Tc shall not be less than 5 minutes, therefore:

Time of Concentration: 5.00 minutes

Intensity is calculated as: $I = \frac{m}{T_0}$

m n

Peak 25 yr Discharge = Q25 = CIA = 0.94 c.f.s.

4 Detention Basin Design using the Bowstring Method

Time Increment: 5 minutes
Time of Concentration: 5.00 minutes
Desired Outflow: 0.33 cfs

Runoff Coefficient: 0.855
Area: 0.38 acres

Single Depth Drywell(s)
Double Depth Drywell(s)

Time	Time	Intensity	Q	Volume In	Volume Out	Storage
(minutes)	(seconds)	(in/hr)	(cfs)	(cu.ft.)	(cu.ft.)	(cu.ft.)
0	0	-	-	-	-	-
2	120	2.90	0.94	119	103	16
5	300	2.90	0.94	288	256	31
10	600	2.01	0.65	394	513	(119)
15	900	1.62	0.52	475	769	(294)
20	1200	1.39	0.45	543	1,025	(483)
25	1500	1.23	0.40	602	1,282	(680)
30	1800	1.12	0.36	655	1,538	(883)
35	2100	1.03	0.33	704	1,795	(1,090)
40	2400	0.96	0.31	750	2,051	(1,301)
45	2700	0.90	0.29	792	2,307	(1,515)
50	3000	0.86	0.28	832	2,564	(1,732)
55	3300	0.81	0.26	870	2,820	(1,950)
60	3600	0.78	0.25	906	3,076	(2,170)
65	3900	0.74	0.24	941	3,333	(2,392)
70	4200	0.72	0.23	974	3,589	(2,615)
75	4500	0.69	0.22	1,006	3,845	(2,839)
80	4800	0.67	0.22	1,037	4,102	(3,065)
85	5100	0.65	0.21	1,067	4,358	(3,291)
90	5400	0.63	0.20	1,096	4,614	(3,519)
95	5700	0.61	0.20	1,124	4,871	(3,747)
100	6000	0.59	0.19	1,151	5,127	(3,976)

^{*}Check formula depending on t < or > Tc

5 Determine Treatment Volume Required by Basin

Total PGIS Area: 15,244 sf

Required Volume Vs. Provided Volume

Treatment Method:	O 1133A	1815A	Equal to first 1/2" of runoff	
Required Treatment Volume from Basin:				635 cu. ft.
Bioinfiltration Treatment Volume Provided:				711 cu. ft.

Bioinfiltration Area Bottom Width:
Bioinfiltration Area Bottom Length:
Bioinfiltration Area Bottom Length:
Bioinfiltration Treatment Depth:
Side Slope (X:1):

15.9 ft.
Width at treatment depth:
83.0 ft
(Bottom Elevation to Rim Elevation)

Bioinfiltration Bottom Area:	1,275 sf
Bioinfiltration Top Area:	1,572 sf

Is the Bioinfiltration area large enough to hold the required treatment volume?

Bio-Infiltration Swale with Off-Site Discharge

Date: 1/7/2022 Job No.: 21042-0088

Arch. Name:

Project: Sand Creek Ridge

Description and Assumptions:

City of Ponderay

(See Project Location Map)
Design Frequency: 25 year

Basin Area < 10 acres, therefore use Rational Formula

$Q = C \times I \times A$	where	Q = Runoff in cubic feet per second
		C = Runoff Coefficient
		I = Rainfall Intensity in inches per hour
		A = Contributing Area in acres

1 Determine Weighted Runoff Coefficient, C and Area, A

Sub-Area: Basin D Post-Development

Total Drainage Area (A): 15,900 s.f. 0.3650 ac.
Total PGIS: 15,000 s.f. 0.34 ac.

Surface Type	Area (s.f.)	Area (ac.)	С	C*Area in acres
Parking/Driveway (PGIS)	15,000	0.34	0.90	0.31
Sidewalk (PGIS)		-	0.90	-
Landscaping	900	0.02	0.30	0.01
Roof (NPGIS)	-	-	0.90	-
		-		-
TOTAL	15,900	0.37		0.32

Weighted Runoff Coefficient (C) = (sum CA)/(sumA) =	0.87

2 Determine Rainfall Intensity, I

Duration (in minutes) is based on the Time of Concentration, Tc

burdion (in minutes) is based on the finite of concentration, to

Reach 1: Overland Flow where Tc = Time of Concentration in minutes of the longest route that the flow will take

 $Tc = \frac{L}{K - L(x)}$ L = Length in feet K = Ground Cover Coefficient

 $TC = \frac{K = Ground Cover Coefficient}{K * \sqrt{S}}$ S = Average Slope in ft/ft

L (ft) K S
300 1200 0.01

Time of Concentration: 2.50 minutes

Tc shall not be less than 5 minutes, therefore:

Time of Concentration: 5.00 minutes

Intensity is calculated as: $I = \frac{m}{T_{cc}}$

m n 6.8 0.53

Peak 25 yr Discharge = Q25 = CIA = 0.92 c.f.s.

4 Detention Basin Design using the Bowstring Method

Time Increment: 5 minutes
Time of Concentration: 5.00 minutes
Desired Outflow: 0.33 cfs

Runoff Coefficient: 0.866
Area: 0.37 acres

Single Depth Drywell(s)
Double Depth Drywell(s)

Time	Time	Intensity	Q	Volume In	Volume Out	Storage
 (minutes)	(seconds)	(in/hr)	(cfs)	(cu.ft.)	(cu.ft.)	(cu.ft.)
0	0	-	-	-	-	-
2	120	2.90	0.92	116	104	12
5	300	2.90	0.92	281	260	21
10	600	2.01	0.63	385	520	(135)
15	900	1.62	0.51	464	779	(315)
20	1200	1.39	0.44	530	1,039	(509)
25	1500	1.23	0.39	588	1,299	(711)
30	1800	1.12	0.35	640	1,559	(919)
35	2100	1.03	0.33	688	1,819	(1,131)
40	2400	0.96	0.30	732	2,078	(1,346)
45	2700	0.90	0.29	774	2,338	(1,565)
50	3000	0.86	0.27	813	2,598	(1,785)
55	3300	0.81	0.26	850	2,858	(2,008)
60	3600	0.78	0.25	885	3,118	(2,233)
65	3900	0.74	0.24	919	3,378	(2,459)
70	4200	0.72	0.23	951	3,637	(2,686)
75	4500	0.69	0.22	983	3,897	(2,914)
80	4800	0.67	0.21	1,013	4,157	(3,144)
85	5100	0.65	0.20	1,042	4,417	(3,375)
90	5400	0.63	0.20	1,070	4,677	(3,606)
95	5700	0.61	0.19	1,098	4,936	(3,839)
100	6000	0.59	0.19	1,125	5,196	(4,072)

^{*}Check formula depending on t < or > Tc

5 Determine Treatment Volume Required by Basin

Total PGIS Area: 15,000 sf

Required Volume Vs. Provided Volume

Treatment Method:	O 1133A	1815A	Equal to first 1/2" of runoff	
Required Treatment Volume from Basin:				625 cu. ft.
Bioinfiltration Treatment Volume Provided:				680 cu. ft.

Bioinfiltration Area Bottom Width:
Bioinfiltration Area Bottom Length:
Bioinfiltration Treatment Depth:

32.9 ft.
Width at treatment depth:
41.0 ft
Under Company of the streatment depth:
Width at treatment depth:
41.0 ft
Under Company of the streatment depth:
Under Company of the streatment

Bioinfiltration Treatment Depth: 0.5 ft. (Bottom Elevation to Rim Elevation)
Side Slope (X:1): 3

Bioinfiltration Bottom Area: 1,250 sf
Bioinfiltration Top Area: 1,472 sf

Is the Bioinfiltration area large enough to hold the required treatment volume?

Bio-Infiltration Swale with Off-Site Discharge

Date: 1/7/2022 Job No.: 21042-0088

Arch. Name:

Project: Sand Creek Ridge

Description and Assumptions:

City of Ponderay

(See Project Location Map)
Design Frequency: 25 year

Basin Area < 10 acres, therefore use Rational Formula

$Q = C \times I \times A$	where	Q = Runoff in cubic feet per second C = Runoff Coefficient
		I = Rainfall Intensity in inches per hour A = Contributing Area in acres

1 Determine Weighted Runoff Coefficient, C and Area, A

Sub-Area: Basin E Post-Development

Total Drainage Area (A): 20,200 s.f. 0.4637 ac. Total PGIS: 15,400 s.f. 0.35 ac.

Surface Type	Area (s.f.)	Area (ac.)	С	C*Area in acres
Parking/Driveway (PGIS)	9,200	0.21	0.90	0.19
Sidewalk (PGIS)		-	0.90	-
Landscaping	4,800	0.11	0.30	0.03
Roof (NPGIS)	6,200	0.14	0.90	0.13
		-		-
TOTAL	20,200	0.46		0.35

Tc = Time of Concentration in minutes of the longest route that the flow will take

2 Determine Rainfall Intensity, I

Reach 1: Overland Flow

Duration (in minutes) is based on the Time of Concentration, Tc

,

 $Tc = \frac{L}{K * \sqrt{(S)}}$ L = Length in feet K = Ground Cover Coefficient S = Average Slope in ft/ft

where

L (ft) K S 300 1200 0.01

Time of Concentration: 2.50 minutes

Tc shall not be less than 5 minutes, therefore:

Time of Concentration: 5.00 minutes

Intensity is calculated as: $I = \frac{m}{T_{col}}$

m n

l =	2.90 in./hr.	

Peak 25 yr Discharge = Q25 = CIA = 1.02 c.f.s.

4 Detention Basin Design using the Bowstring Method

Time Increment: 5 minutes
Time of Concentration: 5.00 minutes
Desired Outflow: 0.41 cfs

Runoff Coefficient: 0.757
Area: 0.46 acres

Time	Time	Intensity	Q	Volume In	Volume Out	Storage
(minutes)	(seconds)	(in/hr)	(cfs)	(cu.ft.)	(cu.ft.)	(cu.ft.)
0	0	-	-	-	-	-
2	120	2.90	1.02	131	91	40
5	300	2.90	1.02	314	227	87
10	600	2.01	0.70	429	454	(26)
15	900	1.62	0.57	516	682	(165)
20	1200	1.39	0.49	590	909	(319)
25	1500	1.23	0.43	654	1,136	(482)
30	1800	1.12	0.39	712	1,363	(651)
35	2100	1.03	0.36	765	1,591	(826)
40	2400	0.96	0.34	814	1,818	(1,004)
45	2700	0.90	0.32	860	2,045	(1,185)
50	3000	0.86	0.30	904	2,272	(1,369)
55	3300	0.81	0.29	945	2,500	(1,555)
60	3600	0.78	0.27	984	2,727	(1,743)
65	3900	0.74	0.26	1,022	2,954	(1,932)
70	4200	0.72	0.25	1,058	3,181	(2,124)
75	4500	0.69	0.24	1,092	3,408	(2,316)

0.23

0.23

0.22

0.21

0.21

0.67

0.65

0.63

0.61

0.59

80

85

90

95

5 Determine Treatment Volume Required by Basin

Total PGIS Area: 15,400 sf

4800

5100

5400

5700

6000

Required Volume Vs. Provided Volume

Side Slope (X:1):

required volume vs. i	TOVIACA VOIGITI				
Treatment Method:	1133A (● 1815A	Equal to first 1/2" of runoff		
Required Treatment Volume from Basin:				642 c	u. ft.
Bioinfiltration Treatme	ent Volume Pro	vided:		785 c	u. ft.

3

Bioinfiltration Area Bottom Width: 11.4 ft. Width at treatment depth: 14.4 ft
Bioinfiltration Area Bottom Length: 120 ft. Length at treatment depth: 123.0 ft
Bioinfiltration Treatment Depth: 0.5 ft. (Bottom Elevation)

1,126

1,158

1,190

1,220

1,250

3,636

3,863

4,090

4,317

4,545

(2,510)

(2,705)

(2,900)

(3,097)

(3,295)

Diginfiltration Pottom Argo: 1 270 cf

Bioinfiltration Bottom Area: 1,370 sf
Bioinfiltration Top Area: 1,774 sf

Single Depth Drywell(s)

Double Depth Drywell(s)

 $^{100 \}hspace{1.5cm} 60 \\ \text{*Check formula depending on } t < or > Tc \\$