505 VERMEER DRIVE COMMERCIAL SITE PLAN DESIGN REPORT

2020

SSIONAL

9 NIEL W

NOVEMBER 6

7B ENGINEERING Authored by: Dan Larson & Ian Ehrsam

414 Church St., Ste 205 I Sandpoint, ID 83864 (208) 263-0623 info@7BEngineering.com

DESIGN REPORT

SITE, GRADING, STORMWATER & EROSION CONTROL PLAN For

RPP36990010060A aka **505 Vermeer Drive**, Ponderay, ID 83852 Ponderay Business Park Blk 1 Lot 6 Section 2, Township 57 North, Range 2 West, Boise Meridian, Bonner County, Ponderay, Idaho

Figure 1: Vicinity Map

Table of Contents

Table of Figures	
Table of Tables	
Introduction	
Project Location	
Geotechnical	
Water System	
Sewer System	
Road Specifications	.4
Stormwater Facility Description and Calculations	
Hydrology and Hydraulics	. 5
Treatment Calculations	. 5
Stormwater Facility Construction and Maintenance	. 7
Constructions considerations	
Grassed Infiltration Area	7
Bioretention	
Maintenance Requirements	
-	
Erosion and Sediment Control BMP's	
Temporary Erosion and Sediment Controls	. 8
Timing of Construction	. 9
Staging Areas	. 9
Preservation of Existing Vegetation	. 9
Clearing Limits	. 9
Mulching	
Fiber Rolls	
Temporary Berms	10
Permanent Erosion Controls	11
Proposed Supplementary Conditions	11
Operation and Maintenance Plan	
Inspection Schedule & Maintenance Activities	12
References	13
Table of Figures	
Figure 1: Vicinity Map	2
Table of Tables	• 4
	5
Table 1: Stormwater Basin Summary Table 2: Treatment Volume Summary	
Attachments	. 0
Soils Information and Map	
Modified Rational Calculations for Stormwater	
Owner Information/Building Floor Plan – supplied by owner	
Engineers Cost Estimate for Sidewalk	

Introduction

This report has been prepared to address design required by the City of Ponderay for a site plan application on 0.322 acres at 505 Vermeer Drive in Ponderay, Idaho for Burnett Electric Inc. More specifically, this Site, Grading, Stormwater, and Erosion Control Plan addresses site requirements to construct a new commercial/industrial building.

Approximately a 4,000 SF building and a 6,470 SF parking lot will be constructed. Stormwater runoff, after treatment and detention, will be directed to existing stormwater swale along the west side of the property This report, calculations, and drawings are for review by the City of Ponderay and shall become the property of the Owner when approved for construction. All other requirements for any future building permits must be met by the Owner. This report addresses design requirements of the City.

Project Location

The site is located on the west side of Vermeer Drive close to Vermeer Court (see Figure 1). Property Identification Numbers: RPP36990010060A aka Ponderay Business Park Block 1 Lot 6 in Section 2, Township 57 North, Range 2 West, Boise Meridian, Bonner County, City of Ponderay, Idaho.

Location:	Property owner:	Size of Lot:
Section 2, T57N, R2W	Burnett Electric Inc	0.322 Acres

Geotechnical

The USDA NRCS Web Soil Survey was used to categorize the soil characteristics at this site. A site visit confirmed the findings of the NRCS and the soils appeared to be consistent with the Survey. In general, the site consists of Odenson silt loams, soils in Hydrologic group B/D. These soils have a low infiltration rate (high runoff potential), are very deep and very poorly drained. These consist chiefly of volcanic ash and loess.

Soil amendment and underdrains (where feasible) are recommended for any infiltration treatment design. All required testing and inspections will be coordinated by the Owner and Contractor and/or his representative and will be submitted to the Engineer if required at the completion of construction.

Water System

The city of Sandpoint supplies water to the site.

Sewer System The site is currently served by the Kootenai-Ponderay Sewer District.

Road Specifications

Vermeer Drive is a publicly owned and maintained roadway.

Stormwater Facility Description and Calculations

In general, this project disturbs a very small amount of area sloping less than 5 percent. All new impervious surface areas are required to be treated by grassed infiltration areas per the City of Ponderay. No other Best Management Practices from the DEQ Stormwater Catalog (Catalog, 2005) are considered. To treat the impervious runoff from the parking lot and building, only grassed infiltration and detention areas are proposed. The GIAs shown are sized to capture the first ½" of runoff from the site for treatment and detention requirements.

Hydrology and Hydraulics

To protect the drainage and downstream properties from hazardous runoff flooding, the Rational method was used for stormwater calculations. The peak runoff for the predeveloped design storms using the Idaho Intensity/Duration/Frequency curves for the 25year and 50-year storms were compared to the post-developed peak runoff rates.

Contributing runoff to the site was determined by a site visit and topographical survey. Rainfall amounts were taken from the NOAA Isopluvial precipitation maps for Idaho and the IDF curve for a 25-year and 50-year design events. Downstream of this basin, is existing stormwater system that empties into a wetland/pond area north of this property.

The GIAs are sized for treatment as well as detention of all new on-site impervious areas for the 25-Year and 50-Year runoff events. However, the swale must accommodate off-site flow, so it is primarily sized for the 50-Year, 24-Hour peak storm event. A summary of the stormwater calculations are presented in Table 1.

Stormwater Basin Summary					
Basin	Area (SF)	CN	24-Hr Peak Flow (CFS)	Required Detention Volume (CF)	
50-Year (Existing)	108,900	87	0.16	N/a	
50-Year (Proposed)	108,900	94	0.18	1,190	
25-Year (Existing)	28,955	83	0.03	N/a	
25-Year (Proposed)	28,955	91	0.05	1,022	

All stormwater discharges through swale on the property.

Treatment Calculations

In general, more treatment volume is provided in the design than is required for the improvements shown. Table 2 below summarizes the treatment design calculations for the required first $\frac{1}{2}$ inch of runoff from new impervious surface areas created by the project.

Treatment Summary					
Facility	Impervious Area (SF)	Volume Required (CF)	Volume Proposed (CF)		
Existing	11,779	491	643		
Proposed	11,867	474	557		
Total	23,646	965	1200		

Table 2: Treatment Volume Summary

Existing site impervious area is the neighbor's driveway and roof shed. The proposed stormwater treatment combined area is about 1800 SF at 8" depth.

The treatment volumes were found using the following calculations:

• Treatment Volume was calculated with the following equation:

$$(V_{treatment} cf) = (A_{impervious} sf) \times \left[\left(\frac{1}{2} in \text{ of runoff} \right) \times \left(\frac{1ft}{12in} \right) \right]$$

• **Treatment Area** was calculated with the following equation:

 $(A_{treatment} sf) = (V_{swale} cf) \div [Depth of Swale in ft]$ Note: Maximum treatment depth is 6" from the bottom of Swale/Grassed Infiltration Area for residential and 8" for Commercial or Industrial. However, Swales or GIAs may be deeper where additional detention is required.

• Infiltration Disposal Rate was calculated with the following equation:

 $(Q_{infiltrate} \ CFS) = (A_{swale} \ sf) \times (f_{swale} \ \frac{in}{hr}) \times \left(\frac{1 \ ft}{12 \ in}\right) \times \left(\frac{1 \ hr}{360 \ sec}\right)$ where f_{swale} is the Infiltration Rate assumed or proposed for a given soil.

• Manning's Equations:

$$Q = VA \qquad V = \frac{k}{n} \left(\frac{A}{P}\right)^{2/3} S^{1/2}$$

Where:

k is a unit conversion factor:

k=1.49 for English units (feet and seconds).

k=1.0 for SI units (meters and seconds).

A = Flow area of the pipe, culvert, or channel.

P = Wetted perimeter (the portion of the circumference that is in contact with water).

Q = Discharge (flow rate).

S = Downward (longitudinal) slope of the culvert, pipe, or channel.

V = Average velocity in the pipe, culvert, or channel.

It is assumed that the topsoil layer of facility will be properly modified for infiltration and plant growth as detailed in the section below. An infiltration rate of 1 to 3 inches is desirable. For this analysis, a rate of 2 in/hr is assumed. An underdrain is included so that the stormwater facility could meet the required infiltration rate.

• Underdrain Pipe Capacity Calculation:

$$(A_{swale} sf) = (1800 sf)$$
$$(Q_{infiltrate} cfs) = (1,800 sf) \times (2_{swale} \frac{in}{hr}) \times \left(\frac{1 ft}{12 in}\right) \times \left(\frac{1 hr}{3600 sec}\right) = 0.0833 cfs$$

From commonly available nomographs for smooth interior pipe (Manning's "n" of 0.012), a 8" pipe at 0.27% slope has a capacity of 0.75 cfs at a velocity of 2 fps. This capacity chart is included in the Appendices but is based on Manning's Equation.

Using classic Rational Method, a 25-Year, 5-minute storm event would produce the following runoff to be collected by the 8" underdrain pipe.

$$(Q_{peak}) = CiA$$

 $(Q_{peak}) = 0.90(2.8)(\frac{11,370sf}{43560 sf/ac}) = 0.66 cfs$

This is below the capacity of a 8" smooth interior pipe installed at 0.27% slope. However, combined with the treatment flow rate, the desired flushing velocity of 2fps within the pipe might be achieved. Otherwise, inlets are provided in the design to allow flushing and cleaning of the system (if needed).

Stormwater Facility Construction and Maintenance

The facilities shown on these plans are intended to be constructed as a bioinfiltration facility (Grassed Infiltration Area or Raingarden). Two options are presented here but are not intended to be exhaustive. The Owner should choose to construct either a GIA (grassed and requires regular maintenance) or a Raingarden (requires more plantings but little maintenance).

Constructions considerations

Grassed Infiltration Area (Common GIA):

GIA's are commonly seen as depressed grassy areas or swales free of invasive weeds, shrubs, or trees. They use soils and a compact root zone (typically from grass) to remove stormwater pollutants. They require frequent mowing and light maintenance (see below).

- 1) Grass or sod may be used but should be a species adapted to permeable soils. Avoid grass intended for clay soils or sod grown on clay.
- 2) Soil should be less than 25% clay, 3 to 5% organic material, and at least 60% sand.
- 3) Apply compost at a depth of 3 inches over area and till to 8-inch depth.
- 4) Scarify facility subgrade to 12-inch depth before planting. DO NOT COMPACT.
- 5) Grass height should be kept at 3 inches to 9 inches and all grass clippings removed.
- 6) Sediment should be removed when it begins to inhibit the growth of grass.

Bioretention (Raingarden):

Bioretention facilities (or Raingardens) use soils and both woody and herbaceous plants to remove pollutants. They require little or no maintenance (unless obvious failure occurs) but are more expensive to construct. Raingardens are $\frac{1}{2}$ to $\frac{1}{3}$ the area of a GIA to treat the same volume. This does not change the required stormwater detention volume shown above.

1) Scarify native soil at subgrade and place 18-inches of sand at the bottom of the facility.

- 2) Topsoil should be less than 25% clay, 8-9% organic material, and at least 60% sand 2 ft to 4 ft thick.
- 3) Place a 3-inch layer of mulch over the topsoil to line the pond before planting.
- 4) A mixture of trees, shrubs, and grass is preferred.
- 5) Water-loving plantings should be chosen (Alder, Willow, Ash, Dogwood, Sedges, etc.) or ponding depth should be limited to 6 inches.
- 6) Infiltration rates should not exceed 9 inches per hour.
- 7) Undesirable ponding may occur on some native soils and underdrains may be required.

Maintenance Requirements

Inspect the constructed facility monthly and between large storm events for the first year. After the facility is established and working as designed, inspect in the spring and fall. Remove any dead or diseased vegetation and replant as needed. Mulch any bare spots at inspection and the entire facility every 2 to 3 years.

Water standing for more than 4 days after a storm when temperatures are above 50 degrees Fahrenheit may indicate a problem with the facility. Sediment removal and scarification of the topsoil or subgrade may be required. In extreme cases, soils may need to be replaced.

In addition to the treatment/filtration facility required to treat the driving surfaces, the treatment swale must be kept clean and clear to allow snow storage and stormwater floaters.

Erosion and Sediment Control BMP's

In general, this project disturbs 0.322 acres with an average slope of 2 percent. By constructing through the summer month, much of the maintenance needed on slopes with these soils can be avoided. A simple erosion control plan is presented here and shown on the plans, consisting primarily of fiber rolls, compost berms, and maintaining existing vegetation. Care must be taken by the Contractor to practice additional erosion control measures if needed.

To properly construct this project, approximately 0.322 Acres will be disturbed, including:

- Site Grading (Parking lot) and Utility Construction
- Building Pad
- Fine grading of landscape and stormwater facilities

All disturbed exposed areas will be covered with suitable topsoil, mulched, and either landscaped or re-vegetated on slopes 3:1 or less. Slopes steeper than 2:1 will be stabilized with stone mulch, riprap or boulders.

Temporary Erosion and Sediment Controls

All temporary erosion control features shall be installed and maintained as detailed and shall prevent stormwater runoff or sediment migration off-site. Barriers shall be placed perpendicular to the direction of flow and shall be deployed before construction begins. Leave all temporary stormwater and erosion control measures in place until vegetation has been re-established. Construct silt fence, compost berms, or fiber rolls where overland flow may allow runoff to leave the construction site or enter the neighboring properties. Mulching of disturbed, final graded areas can be done with hay, straw, wood chips, or grass clippings (8-10 pounds per 100 sf).

Timing of Construction

Construction activities for this site grading will proceed as follows:

Construction Schedule	Timing
Excavation and grading	Apr-21
Utility Construction	Apr-21
Finish grade bioswales and landscape areas	May-21
Reseed slopes and distrubed areas	May-21
Building Construction	May-21

By constructing in the dry season, the risk of sediment laden runoff is minimized and the sequence of construction will occur during optimal conditions. The Owner and Contractor shall continually monitor the site conditions and progress of the work, keeping erosion control measures in good repair.

Staging Areas

Equipment will be staged on the property and adjacent to the right-of-way that is undeveloped, ensuring any runoff from equipment or vehicles has adequate time for treatment. No dikes, berms or grading of staging areas is warranted or proposed.

Preservation of Existing Vegetation

Preserve all vegetation (trees and grass) not within the areas to be graded and minimize bare soil exposure. Grading activity areas shall be limited to those shown on the Plan. Keep all construction equipment, materials, and waste within the areas designated on the Plan and out of areas to be preserved.

Clearing Limits

Minimize the total area of bare soil exposed to 1 acre and cover with straw or stone mulch within 14 days of disturbance. Mulch slopes and cover exposed driveway surfaces with rock as grading progresses to reduce dust and erosion potential. Do not disturb areas outside of the grading limits established by the Plan. At the end of construction, prepare all slopes and landscape areas for seeding or include seed in the erosion control mulch used.

Mulching

Apply straw, grass, grass hay, compost, wood chips, or wood fibers onto exposed soils leaving no more than 1 acre exposed for no more than 14 days. Driveway graded surfaces should be mulched or covered by aggregate as soon as practical to prevent erosion and reduce dust. Slopes steeper than 2:1 may require netting or tacking agents to hold mulch in place.

If wood chips or fibers are used, especially if obtained by chipping trees or stumps on the site, limit use to slopes under 6%. If vegetation is desired, treat chipped areas with a nitrogen fertilizer to aid plant germination and growth – otherwise wood chips tent to reduce growth of undesirable plants.

Use wood or stone mulches in areas that are not desirable to mowed or maintain. Bark chips in particular should not be used on sloped areas as they tend to be carried away by spring runoff.

Gravel or crushed rock placed as mulch should be placed at 10 tons / 0.10 acre (4,400 sf) at a depth of 3 inches (average). Use where subject to traffic or on slopes where maintenance of vegetation is not desired.

Hay or straw mulch should be free of unwanted seeds and applied at 2 or 3 bales per 1,100 sf of exposed soil at a depth of 2 to 3 inches in a uniform mat. No more than 40% of the original ground or exposed soils should be visible through the mat. Netting or tacking agents may be needed on slopes exposed to wind or steeper than 2:1.

Wood fiber mulches should be used where plant growth is to be inhibited, particularly on slopes steeper than 3:1 where mowing or maintenance of vegetation is not desired. If used in areas where growth is to be encouraged, nitrogen treatment will be needed. Apply to an average depth of 3 inches or about 25 lbs per 1,000 sf.

Compost used as mulching should be applied to the Grassed Infiltration Area and any other areas where growth (grasses) is desired. Apply compost at a depth of 3 inches over areas where seeding is to be done.

Inspect all mulched areas weekly and repair any damaged or exposed soils immediately. Mulching should cease once vegetation is re-established.

Fiber Rolls

A fiber roll (wattle/compost-filled socks) consists of straw, flax, or other similar materials bound into a biodegradable tubular plastic or similar encasing material. Fibers rolls should be placed along a contour unless otherwise shown in plans. For slope inclinations 2:1 or greater, fiber rolls should be placed a maximum interval of 10 ft. When placing, turn the ends of the fiber roll up slope to prevent runoff from going around the roll. If more than one wattle is placed in a row, the rolls shall be overlapped a minimum of 12 inches. Maintain rolls daily during extended rain events, after rain events, and two-week intervals during dry season. Sediment shall be removed when sediment accumulation reaches one-half of the exposed height of the roll.

Temporary Berms

A berm or ridge of compacted soil, compost, or sandbags which is created to intercept and divert runoff from small construction areas. They are often constructed along the top edge of a fill slope but may also be constructed along a roadway, across a roadway (a transverse berm) at an angle with the centerline.

Temporary berms are used to direct or divert runoff flow from newly constructed slopes until vegetation is established or other permanent measures are in place. They intercept the stormwater flow from the construction area and direct it to temporary slopes drains or protected outlets for safe discharge. They can also be used as barriers to collect and store runoff. They can be used at storm drain inlets, across minor ditches or swales, or other areas where the structure is temporary.

Soil berms have an approximate height of 12 to 20 inches with a minimum top width of 2 to 3 feet and side slopes of 2:1 or flatter. Berms should be high enough to prevent flow from overtopping and are normally constructed of embankment materials. Grade to drain to a slope or drain inlet. Compact the entire width of the berm with a bulldozer or loader/grader wheels.

Compost berms act as filter berms and are most effective when constructed 1 foot high by 2 feet wide or 1.5 feet high and 3 feet wide. Construct with 25-100% organic matter with particles not to exceed 3-inches thick or 6-inches long. Particle gradation should also be 90-100% passing a 1-in. filter, 70-100% passing the $\frac{3}{4}$ inch filter, and 30%-75% passing the $\frac{1}{4}$ inch filter.

Sandbag berms have the following dimensions

- Height: 20 in. minimum
- Top Width: 20 in. minimum
- Bottom Width: 4-1/4 to 5 feet
- Sandbag size length 2 -2.6 ft, width 16-20 in., depth or thickness 6-8 inches. and weight 88 to 132 lbs.

Install so that flow between bags is prevented. Stack bags in an interlocking fashion but no more than 3 bags high without widening the base. Can be used to impound the volume of the design storm.

Permanent Erosion Controls

After construction is complete, all exposed soils shall be covered by a minimum of 3-inches topsoil or mulch. Areas to be vegetated will be seeded, planted, or landscaped. Slopes in excess of 2:1 shall be armored with rip-rap or covered with topsoil, seeding, mulch, and matt.

Seeding and mulching shall not be applied to areas of standing water. Mulch shall be applied at a rate of 8-10 pounds per 100 square feet (2" - 3" thick when loose) with a maximum of 20% of original ground noticeable. Slopes in excess of 3:1 which are not riprapped shall be covered with Jute matting or hydro-seeded for stability of seed bed.

Plant List

Refer to Bonner County Code Title 12, Appendix B - North Idaho Native and Beneficial Plant List.

Proposed Supplementary Conditions

The following are proposed & recommend conditions to help achieve site approval by the City of Ponderay.

Sidewalk

The owner requests to pay a fee in lieu for sidewalk construction because there are no sidewalks adjacent of the project. A stormwater drainage ditch and public utilities also makes the installation of the sidewalk unreasonable on the property. Please see the attached engineers estimated value.

Setback

A proposed sideyard setback reduction of five feet is requested by owner. A letter of support from both owners has been suggested.

Operation and Maintenance Plan

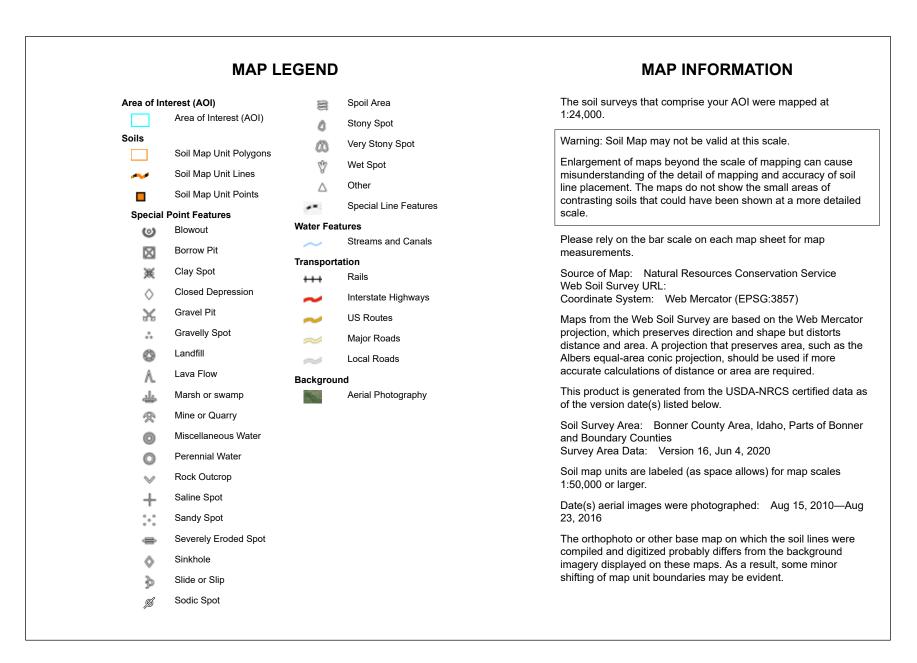
Temporary and Permanent Erosion and Stormwater control measures will be the responsibility of the Owner:

Inspection Schedule & Maintenance Activities

As described above, both temporary and permanent erosion and sediment control measures should be inspected by the Owner and/or Contractor. Below is an inspection schedule table for convenience.

Stormwater Feature or Erosion Control Measure	Inspection Frequency	Maintenance Activities
Mulching	Weekly & following major rain event	Mulch exposed soil
Fiber Rolls	Weekly & following major rain event	Repair and remove sediment
Temporary Berms	Weekly & following major rain event	Repair or Replace as needed.
Treatment and Detention	Monthly the first year and bi-annually	Mulch exposed soil and mulch
Facility	thereafter	cell every 2 to 3 years

In conclusion, I find that the proposed permanent improvements if properly constructed and maintained as described herein and shown on the Plans, will treat and detain the additional runoff to be generated with the future construction of the roadway and buildings on these properties.


References

- Catalog, I. S. (2005). *http://www.deq.idaho.gov/media/622263-Stormwater.pdf*. Retrieved from deq.idaho.gov: http://www.deq.idaho.gov/media/622263-Stormwater.pdf
- Kennedy Engineers. (1992). Stormwater Management Plan Criteria and Engineering Standards. Spokane, WA: Interagency Stormwater Committee.
- National Resource Conservation Service. (n.d.). *Web Soil Survey*. Retrieved from USDA NRCS: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
- NOAA Atlas 2. (1973). Precipitation Frequency Isopluvials. NOAA.
- Thomas J. Glover and Richard A. Young. (2001-2017). *Handyman In-Your-Pocket*. Anchorage, Alaska, U.S.A.: Sequoia Publishing, Inc.
- U.S. Environmental Protection Agency. (September, 2004). Stormwater Best Management Practice Design Guide: Volume 1 General Considerations. Washington DC: Office of Research and Development.

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 10/23/2020 Page 1 of 3

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
34	Odenson silt loam, 0 to 2 percent slopes	0.3	100.0%
Totals for Area of Interest		0.3	100.0%

Bonner County Area, Idaho, Parts of Bonner and Boundary Counties

34—Odenson silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 5465 Elevation: 2,000 to 3,000 feet Mean annual precipitation: 25 to 38 inches Mean annual air temperature: 43 to 46 degrees F Frost-free period: 80 to 120 days Farmland classification: Prime farmland if drained

Map Unit Composition

Odenson and similar soils: 70 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Odenson

Setting

Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Linear Parent material: Volcanic ash and loess over silty glaciolacustrine deposits

Typical profile

A - 0 to 9 inches: silt loam 2Bg - 9 to 18 inches: silty clay loam 2Bgk - 18 to 35 inches: silty clay loam 3Cg - 35 to 46 inches: silt loam 4Cgk - 46 to 57 inches: silty clay 5Cg - 57 to 60 inches: very fine sandy loam 6Cgk - 60 to 62 inches: silty clay 7Cg - 62 to 65 inches: silt loam

Properties and qualities

Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Poorly drained Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr) Depth to water table: About 6 to 24 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 5 percent Available water storage in profile: High (about 11.0 inches)

JSDA

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Pywell

Percent of map unit: 5 percent Landform: Basin floors Hydric soil rating: Yes

Wrencoe

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Hoodoo

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Bonner County Area, Idaho, Parts of Bonner and Boundary Counties Survey Area Data: Version 14, Sep 13, 2018

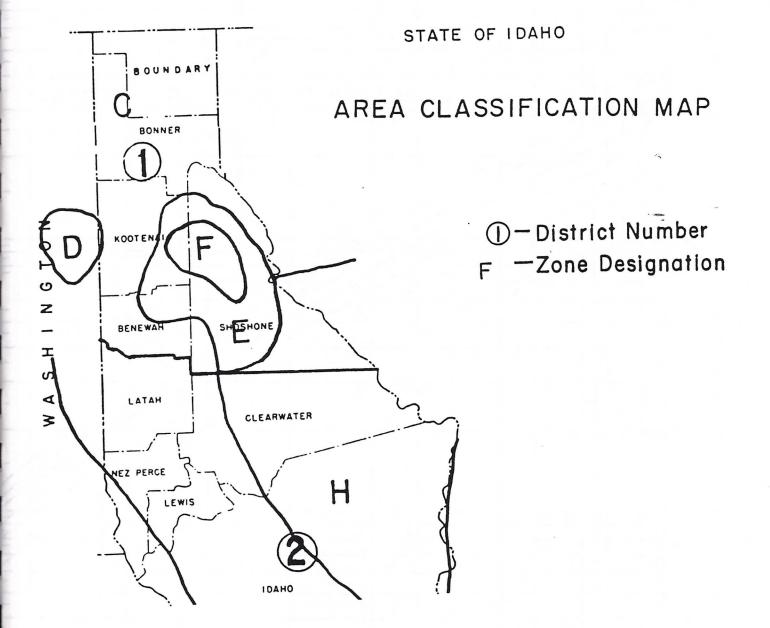
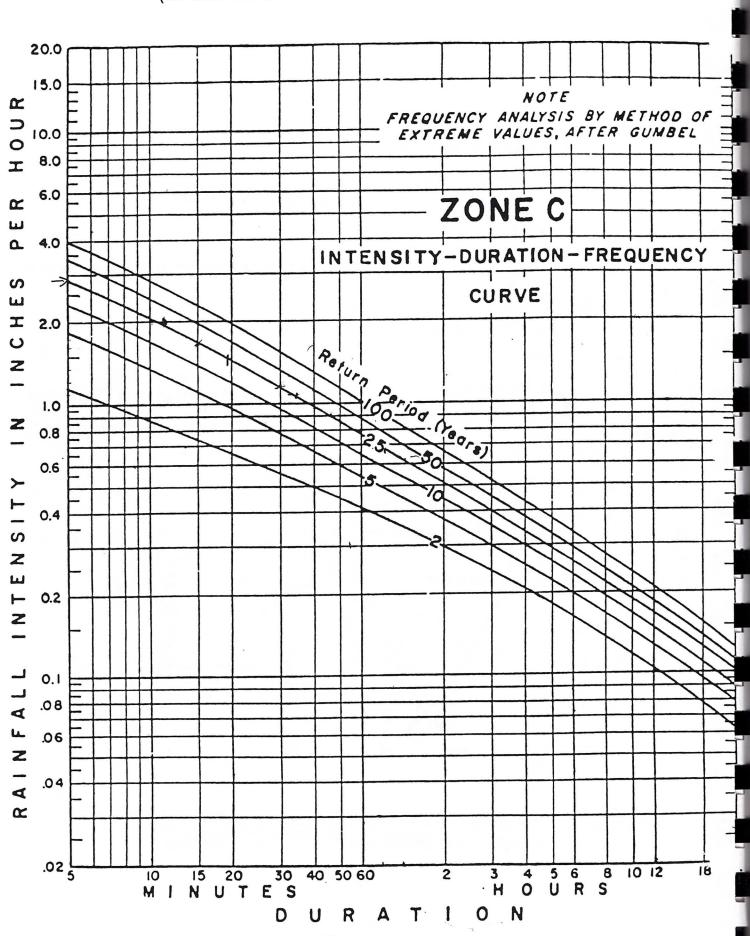



FIGURE 6-3 AREA CLASSIFICATION MAP FOR IDF CURVES - IDAHO (IDAHO TRANSPORTATION DEPARTMENT)

FIGURE 6-4 ZONE C, INTENSITY-DURATION-FREQUENCY CURVE (IDAHO TRANSPORTATION DEPARTMENT)

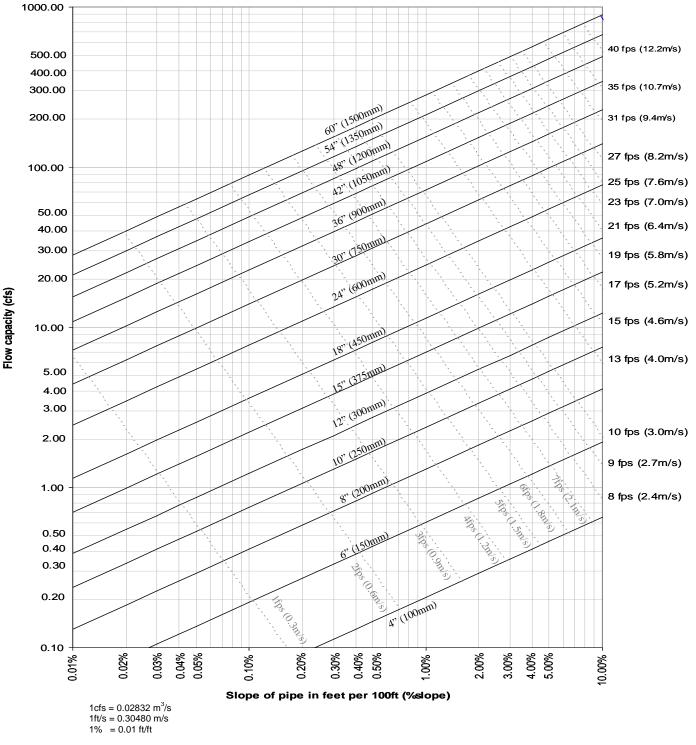


TABLE 6-2 RUNOFF COEFFICIENTS FOR THE RATIONAL METHOD FOR DETERMINING PEAK DISCHARGE

Type of Cover	Flat	Rolling 2%-10%	Hilly
Type of Cover	Flat	270-1070	Over 10%
Pavement and Roofs	0.90	0.90	0.90
Earth Shoulders	0.50	0.50	0.50
Drives and Walks	0.75	0.80	0.85
Gravel Pavement	0.50	0.55	0.60
City Business Areas	0.80	0.85	0.85
Suburban Residential	0.25	0.35	0.40
Single Family Residential	0.30	0.40	0.50
Multi Units, Detached	0.40	0.50	0.60
Multi Units, Attached	0.60	0.65	0.70
Lawns, Very Sandy Soil	0.05	0.07	0.10
Lawns, Sandy Soil	0.10	0.15	0.20
Lawns, Heavy Soil	0.17	0.22	0.35
Grass Shoulders	0.25	0.25	0.25
Side Slopes, Earth	0.60	0.60	0.60
Side Slopes, Turf	0.30	0.30	0.30
Median Areas, Turf	0.25	0.30	0.30
Cultivated Land, Clay and Loam	0.50	0.55	0.60
Cultivated Land, Sand and Gravel	0.25	0.30	0.35
Industrial Areas, Light	0.50	0.70	0.80
Industrial Areas, Heavy	0.60	0.80	0.90
Parks and Cemetaries	0.10	0.15	0.25
Playgrounds	0.20	0.25	0.30
Woodland and Forests	0.10	0.15	0.20
Meadows and Pasture Land	0.25	0.30	0.35
Pasture with Frozen Ground	0.40	0.45	0.50
Unimproved Areas	0.10	0.20	0.30

TABLE 6-3 GROUND COVER COEFFICENTS

Type of Cover				<u>K (</u>	round cove	r coefficie	<u>nt)</u>
Forest with hea	avy ground	l cover			150		
Minimum tillage cultivation					280		
Short pasture grass or lawn					420		
Nearly bare gro					600		
Grassed waterw	vay or sma	Il roadside	e ditch	9	900		
Paved area				1,2	200		
Gutter flow	0.25	feet deep	0		500		
	0.50	feet deep	5	2,4			
	0.75	feet deep		3,1			
				Conc	rete		СМР
				<u>(n = 0</u>			<u>(n = 0.024)</u>
Storm Sewers ((Concrete)			3,0			1,500
		18 inch d		3,9			1,950
		24 inch d	iameter	4,7	00		2,350
					Narrow	Medium	Wide
					W/D = 1	W/D = 2	W/D = 9
Open Channel F	low (n = 0	.040)	l foot deep		1,100	1,500	2,000
			2 feet deep		1,800	2,300	3,100
			4 feet deep		2,800	3,700	5.000

Figure 3-1 Discharge Rates for ADS Corrugated Pipe with Smooth Interior Liner¹

1. Applicable products: N-12[®], MEGA GREEN[®], N-12 STIB, N-12 WTIB, HP STORM, SaniTite[®], SaniTite HP, N-12 Low Head

Note: Based on a design Manning's "n" of 0.012. Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity. Redeveloped from FHWA HDS 3 – Design Charts for Open-Channel Flow²

Stormwater Management Calculations Rational Method <u>Pre-Developed 25 Year</u>

Pre-Developed

Runoff from Table 6-2 kennedy report

		Area(ft^2)	Area(acres)	CN	Runoff	
Pavement		3607	0.09	98	0.90	0.08
Gravel		4255	0.10	91	0.60	0.06
Building		3917	0.09	98	0.90	0.08
Woodland		3150	0.08	55	0.20	0.02
Grass-Lawns		14026	0.33	80	0.25	0.08
	Totals	28955	0.6900	83	2.85	0.32

0.0032 cfs 25 28955 sqft 0.66 0.31 0.46

Time increment
Time of concentration
Outflow
Design year
Area (sqft)
Area (acres)
Area x "C"
Developed "C" factor

Developed "C" 0.46 5 min 5.394600729 min 1) input outflow (0.3 cfs 600 gal drywell, 1.0 cfs 1000 gal drywell) 2) input surface area for basin (in sqft) 3) input the basins "C" factor

(min) (s 5 33 10 66 11 66 12 7 13 7 14 88 15 99 20 11 25 11 30 11 35 22 40 24 45 21 50 33 60 34 85 55 90 55 90 55 90 55 100 66 110 66 120 77 130 77 135 88 140 84 145 99 155 99 160 94 165 95 160 94 165 95 160 94 165 95 160	ne Inc. Intensity	Q	Volume	ľ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sec) (in / hr)	(cfs)	(cf)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300 2.80	0.86	348	
12 7 13 7 14 8 15 9 20 11 25 11 30 11 35 22 40 24 50 33 60 34 65 33 70 44 75 44 80 44 85 55 100 66 115 63 120 77 130 77 130 77 130 8 140 84 145 8 150 90 155 92 160 94 165 92 160 94 165 92 160 94 165 92 170 10	600 2.10 660 2.00	0.65 0.62	460 476	
13 7 14 8 15 9 20 12 25 11 30 11 35 22 40 24 45 21 50 33 60 34 85 55 30 14 80 44 85 55 90 54 90 55 100 66 110 66 120 77 125 75 130 77 135 8 140 8 145 90 155 92 160 94 165 92 160 94 165 92 160 94 165 92 170 100 175 10	720 1.90	0.62	470	
14 8 15 9 20 11 25 11 30 11 35 22 40 22 45 21 50 33 60 34 65 33 70 44 85 55 90 55 90 55 100 66 105 66 110 66 120 77 135 8 140 8 145 99 155 99 160 94 165 99 160 94 165 95 160 94 165 95 170 10 175 10	720 1.90	0.55	508	
15 9 20 11 25 11 30 11 35 22 40 24 45 22 45 22 50 33 60 34 65 33 70 42 75 44 80 444 85 55 90 55 100 66 110 66 125 77 125 77 1305 88 140 84 145 89 155 99 155 99 155 99 160 94 165 99 170 10 177 10	840 1.75	0.54	513	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	900 1.70	0.52	530	
30 11 35 22 40 24 50 33 55 33 60 33 70 44 80 44 85 55 90 55 90 66 105 62 110 66 120 77 130 77 135 8 140 84 145 90 155 92 160 94 145 87 170 100 165 99 170 100 175 10	200 1.60	0.49	647	
35 22 40 24 45 27 50 33 65 33 65 33 70 44 75 44 80 444 85 55 90 55 100 66 110 66 120 77 125 74 130 77 135 8 140 84 145 99 155 99 155 99 155 99 160 94 165 99 170 100 175 10	500 1.40	0.43	696	
40 24 45 23 50 33 60 34 65 33 70 44 80 44 85 55 90 55 90 55 90 55 100 66 110 66 120 77 130 77 135 8* 140 8 145 99 155 99 155 99 155 99 155 99 160 94 165 99 170 100 175 10	800 1.20	0.37	708	
45 22 50 33 55 33 60 33 70 42 75 44 80 44 85 55 90 55 90 55 100 66 115 66 120 72 125 74 130 74 135 8 140 84 145 99 155 99 155 99 155 99 155 99 160 99 165 99 170 10 175 10	100 1.10	0.34	751	
50 30 55 33 60 34 65 33 70 42 75 44 85 55 90 55 90 55 100 66 110 66 120 77 135 8 140 84 145 90 155 92 160 94 165 92 170 100 175 10	400 0.95	0.29	736	
55 33 60 34 65 36 70 44 80 44 85 55 90 54 95 55 100 66 110 66 120 77 125 74 130 77 135 88 140 84 145 99 155 99 160 96 160 96 170 100 175 100	.700 0.90	0.28	781	
60 34 65 33 70 42 75 44 80 44 85 57 90 55 100 66 1105 66 110 66 115 68 140 88 145 89 155 99 155 99 160 94 165 99 170 100 175 10	000 0.87	0.27	835	
65 33 70 42 75 44 80 44 85 55 90 55 90 66 105 66 110 66 120 72 125 74 135 8 140 84 145 90 155 92 160 94 165 92 170 100 175 10	300 0.85	0.26	895	
70 42 75 44 80 44 85 55 90 55 100 66 1105 63 120 72 125 74 130 71 135 8 140 84 145 90 155 92 160 94 165 92 170 100 175 10	600 0.78 900 0.75	0.24 0.23	893 929	
75 44 80 44 85 55 90 55 90 56 910 66 100 66 100 66 110 66 120 77 125 74 130 77 135 8 140 8 145 99 155 99 160 94 165 99 170 10 175 10	200 0.70	0.23	929 932	
80 44 85 5 90 54 95 55 100 60 105 66 120 72 125 77 130 74 1335 8 140 8 145 99 155 93 160 99 165 94 170 10 175 10	.500 0.69	0.22	982	
85 5 90 5 95 55 100 66 110 66 110 61 120 72 125 77 130 74 135 8 140 84 145 90 155 92 160 94 165 92 170 10 175 10	800 0.67	0.21	1016	
95 55 100 66 105 65 110 66 120 77 125 79 130 77 135 86 140 88 145 85 150 99 155 93 160 99 165 99 170 10 175 10	0.65	0.20	1046	
100 60 105 65 110 66 115 66 120 72 125 71 130 74 135 8 140 84 145 69 155 93 160 94 165 94 170 10 175 10	400 0.63	0.19	1072	
105 63 110 66 115 68 120 77 125 74 130 74 135 8 140 84 145 96 155 97 160 96 165 97 170 100 175 10	0.60	0.19	1076	
110 64 115 65 120 72 125 73 130 74 135 8 140 8 145 8 155 99 165 99 165 91 170 10 175 10	000 0.59	0.18	1113	
115 66 120 77 125 78 130 74 135 86 140 88 145 85 150 99 155 93 160 99 165 99 170 10 175 10	300 0.58	0.18	1148	
120 72 125 74 130 74 135 8 140 84 145 81 150 94 155 93 160 94 165 94 170 10 175 10	600 0.55	0.17	1139	
125 74 130 77 135 8 140 84 145 8 150 90 155 92 160 94 165 92 170 10 175 10	900 0.52	0.16	1125	
130 74 135 8 140 84 145 85 150 94 155 93 160 94 165 94 170 10 175 10	200 0.5	0.15	1129	
135 8 140 8 145 8 150 9 155 9 160 9 165 9 170 10 175 10	0.49	0.15	1140	
140 84 145 81 150 90 155 93 160 94 165 94 170 10 175 10	800 0.48 100 0.48	0.15 0.15	1161 1205	
145 8 150 90 155 91 160 90 165 91 170 10 175 10	400 0.46	0.15	1205	
150 90 155 93 160 90 165 93 170 10 175 10	700 0.45	0.14	1215	
155 93 160 96 165 96 170 10 175 10	000 0.44	0.14	1229	
160 96 165 99 170 10 175 10	300 0.43	0.13	1241	
170 10 175 10	600 0.42	0.13	1252	
175 10	900 0.41	0.13	1261	
	0200 0.40	0.12	1268	
	0500 0.39	0.12	1273	
	0800 0.38	0.12	1277	
	1600 0.25	0.08	1676	
	3200 0.17 6400 0.11	0.05	2284 2894	24 Hr Sto

25 year design (s 24-Hour Volume (pre-developed)

(store or discharge 25 year / 2-hour storm event) d) 2894 cu ft

Time of concentration calculation

n = manning roughness(Gravel)	0.03	USDA
p=2 year, 24 hour rainfall	2	
Slope (S)	0.04	
Length (L)	250 feet	
Tc=[0.007(nL)^0.8] / (((P)^0.50)*S^0.4))*60	5.39460073 min	

Stormwater Management Calculations Rational Method Post-Developed Peak Storm 25 Year

Post-Developed Runoff and Developed "C" Factor

		Area(ft^2)	Area(acres)	CN	Runoff	
Pavement		3607	0.09	98	0.90	0.08
Gravel		10725	0.25	98	0.60	0.15
Building		8817	0.21	98	0.90	0.19
Woodland		3150	0.08	55	0.20	0.02
Grass		2656	0.07	80	0.25	0.02
	Totals	28955	0.7000	91	2.85	0.45

Developed "C" 0.65

Time increment
Time of concentration
Outflow (Infiltration)
Design year
Area (sqft)
Area (acres)
Area x "C"
Developed "C" factor

5 min 5 min 0.0833 cfs 25 28955 sqft 0.66 Ac 0.43 0.65

Exifiltration through engineered soils 1) input outflow (0.3 cfs 600 gal drywell, 1.0 cfs 1000 gal drywell) 2) input surface area for basin (in sqft) 3) input the basins "C" factor Weighted value

Time Inc.	Time Inc.	Intensity	Q dev	V in	Q pre	V pre	Storage
(min)	(sec)	(in / hr)	(cfs)		(cfs)		Required
5	300	2.80	1.21	485	0.86	348	☆ 137
10	600	2.10	0.90	635	0.65	460	☆ 174
11	660	2.00	0.86	656	0.62	476	☆ 180
12	720	1.90	0.82	673	0.59	487	185
13	780	1.85	0.80	703	0.57	508	☆ 185 ☆ 193
14	840	1.75	0.75	710	0.54	513	🛧 195
15	900	1.70	0.73	734	0.52	530	202
20	1200	1.60	0.69	897	0.49	647	248
25	1500	1.40	0.60	966	0.43	696	268
30	1800	1.20	0.52	983	0.37	708	268 273
35	2100	1.10	0.47	1043	0.34	751	☆ 290
40	2400	0.95	0.41	1024	0.29	736	☆ 284
45	2700	0.90	0.39	1086	0.28	781	☆ 301
50	3000	0.87	0.37	1162	0.27	835	323
55	3300	0.85	0.37	1245	0.26	895	323 ☆ 346
60	3600	0.78	0.34	1244	0.24	893	🕁 345
65	3900	0.75	0.32	1293	0.23	929	☆ 359
70	4200	0.70	0.30	1297	0.22	932	☆ 359
75	4500	0.69	0.30	1367	0.21	982	379
80	4800	0.67	0.29	1414	0.21	1016	☆ 379 ☆ 392
85	5100	0.65	0.28	1456	0.20	1046	☆ 403
90	5400	0.63	0.27	1493	0.19	1072	☆ 413
95	5700	0.60	0.26	1499	0.19	1076	☆ 415
100	6000	0.59	0.25	1550	0.18	1113	☆ 429
105	6300	0.58	0.25	1599	0.18	1148	☆ 442
110	6600	0.55	0.24	1587	0.17	1139	🏫 439
115	6900	0.52	0.22	1568	0.16	1125	🏫 433
120	7200	0.5	0.22	1572	0.15	1129	🏫 434
125	7500	0.49	0.21	1588	0.15	1140	🏫 438
130	7800	0.48	0.20	1618	0.15	1161	🏫 446
135	8100	0.48	0.20	1680	0.15	1205	🏫 463
140	8400	0.46	0.20	1670	0.14	1199	🏫 460
145	8700	0.45	0.19	1693	0.14	1215	🏫 466
150	9000	0.44	0.19	1713	0.13	1229	171 🖈
155	9300	0.43	0.18	1730	0.13	1241	176
160	9600	0.42	0.18	1745	0.13	1252	🏫 480
165	9900	0.41	0.18	1757	0.13	1261	183
170	10200	0.40	0.17	1767	0.12	1268	185
175	10500	0.39	0.17	1775	0.12	1273	☆ 487 ☆ 488
180	10800	0.38	0.16	1780	0.12	1277	
360	21600	0.25	0.11	2336	0.08	1676	A 631
720	43200	0.17	0.07	3186	0.05	2284	841
1440	86400	0.11	0.05	4036	0.03	2894	★ 1022

25 year design Peak Storm required storage (store or infiltrate 25 year peak flow and volume) 1022 cu ft

 Overall Treatment Req and Soil Infiltraion Rate

 Site Impervious Area (New + Existing)
 23149 SF

 Req Treatment
 964.541667 CF

 Req Treatment Area (8" depth)
 1446.8125 SF

 Proposed Treatment Area (8" depth)
 1800 SF

 Treatment soil infiltration
 2 in/hr

 Soil infiltration of Treatment Area
 0.08333333

 CFS
 Depth of Treatment Area Req'd for Detention

Stormwater Management Calculations Rational Method

Pre-Developed 50 Year

Developed "C"

5.394600729 min

0 cfs

50

108900 sqft 2.50 1.39 0.56

Pre-Developed

Runoff from Table 6-2 kennedy report

		Area(ft^2)	Area(acres)	CN	Runoff	
Pavement		6534	0.15	98	0.90	0.14
Gravel		74052	1.70	91	0.60	1.02
Building		5660	0.13	98	0.90	0.12
Woodland		8712	0.20	55	0.20	0.04
Grass-Lawns		13942	0.33	80	0.25	0.08
	Totals	108900	2.5100	87	2.85	1.39

<mark>C" 0.56</mark> 5 min

Time increment Time of concentration Outflow Design year Area (sqft) Area (acres) Area x "C" Developed "C" factor

 input outflow (0.3 cfs 600 gal drywell, 1.0 cfs 1000 gal drywell)
 input surface area for basin (in sqft)
 input the basins "C" factor

Time Inc.	Time Inc.	Intensity	Q	Volume
(min)	(sec)	(in / hr)	(cfs)	(cf)
5	300	3.29	4.57	1837
10	600	2.55	3.55	2517
15	900	2.16	2.99	3024
20	1200	1.93	2.69	3521
25	1500	1.71	2.38	3834
30	1800	1.49	2.07	3963
35	2100	1.40	1.95	4305
40	2400	1.31	1.82	4572
45	2700	1.22	1.69	4762
50	3000	1.13	1.57	4876
55	3300	1.04	1.44	4914
60	3600	0.95	1.31	4877
65	3900	0.91	1.27	5089
70	4200	0.88	1.22	5275
75	4500	0.85	1.18	5433
80	4800	0.82	1.13	5564
85	5100	0.78	1.09	5668
90	5400	0.75	1.04	5745
95	5700	0.72	1.00	5794
100	6000	0.69	0.95	5817
105	6300	0.65	0.91	5812
110	6600	0.62	0.86	5780
115	6900	0.59	0.82	5720
120	7200	0.55	0.77	5634
125	7500	0.54	0.75	5744
130	7800	0.53	0.74	5844
135	8100	0.53	0.74	6066
140	8400	0.51	0.71	6016
145	8700	0.50	0.69	6088
150	9000	0.49	0.68	6150
155	9300	0.47	0.66	6203
160	9600	0.46	0.64	6246
165	9900	0.45	0.63	6279
170	10200	0.44	0.61	6303
175	10500	0.43	0.60	6317
180	10800	0.42	0.58	6322
360	21600	0.27	0.37	8041
720	43200	0.18	0.25	11028
1440	86400	0.12	0.16	14018

 25 year design
 (store or discharge 50 year / 2-hour storm event)

 24-Hour Volume (pre-developed)
 14018

 cu ft

Time of concentration calculation

· · · · · · · · · · · · · · · · · · ·		1100 4
n = manning roughness(Gravel)	0.03	USDA
p=2 year, 24 hour rainfall	2	
Slope (S)	0.04	
Length (L)	250 feet	
Tc=[0.007(nL)^0.8] / (((P)^0.50)*S^0.4))*60	5.39460073 min	

Stormwater Management Calculations Rational Method Post-Developed Peak Storm 50 Year

Post-Developed Runoff and Developed "C" Factor

		Area(ft^2)	Area(acres)	CN	Runoff	
Pavement		6534	0.15	98	0.90	0.14
Gravel		80522	1.85	98	0.60	1.11
Building		10560	0.25	98	0.90	0.23
Woodland		8712	0.20	55	0.20	0.04
Grass		2572	0.06	80	0.25	0.02
	Totals	108900	2.5100	94	2.85	1.53

Developed "C" 0.61

Time increment
Time of concentration
Outflow (Infiltration)
Design year
Area (sqft)
Area (acres)
Area x "C"
Developed "C" factor

eloped "C" C 5 min 5 min 0.0833 cfs 25 108900 sqft 2.50 Ac 1.52 0 61 0.61

Exifiltration through engineered soils 1) input outflow (0.3 cfs 600 gal drywell, 1.0 cfs 1000 gal drywell) 2) input surface area for basin (in sqft) 3) input the basins "C" factor Weighted value

Time Inc.	Time Inc.	Intensity	Q dev	V in	Q pre	V pre	Storage
(min)	(sec)	(in / hr)	(cfs)		(cfs)		Required
5	300	3.29	5.00	2009	4.57	1837	☆ 171
10	600	2.55	3.88	2722	3.55	2517	☆ 204
15	900	2.16	3.27	3281	2.99	3024	☆ 255
20	1200	1.93	2.94	3827	2.69	3521	304
25	1500	1.71	2.60	4171	2.38	3834	336
30	1800	1.49	2.27	4315	2.07	3963	☆ 350
35	2100	1.40	2.13	4691	1.95	4305	383
40	2400	1.31	1.99	4983	1.82	4572	408
45	2700	1.22	1.85	5193	1.69	4762	☆ 427
50	3000	1.13	1.71	5319	1.57	4876	☆ 438
55	3300	1.04	1.58	5362	1.44	4914	🕁 443
60	3600	0.95	1.44	5322	1.31	4877	☆ 440
65	3900	0.91	1.39	5555	1.27	5089	☆ 460
70	4200	0.88	1.34	5758	1.22	5275	☆ 477
75	4500	0.85	1.29	5931	1.18	5433	☆ 492
80	4800	0.82	1.24	6075	1.13	5564	☆ 504
85	5100	0.78	1.19	6189	1.09	5668	☆ 514
90	5400	0.75	1.14	6273	1.04	5745	숡 521
95	5700	0.72	1.09	6328	1.00	5794	🃩 526
100	6000	0.69	1.04	6353	0.95	5817	숡 528
105	6300	0.65	0.99	6348	0.91	5812	🏫 527
110	6600	0.62	0.94	6313	0.86	5780	숡 524
115	6900	0.59	0.89	6249	0.82		🏫 519
120	7200	0.55	0.84	6154	0.77	5634	☆ 510
125	7500	0.54	0.83	6275	0.75	5744	🏫 520
130	7800	0.53	0.81	6385	0.74	5844	☆ 530
135	8100	0.53	0.81	6627	0.74		🏫 550
140	8400	0.51	0.77	6573	0.71	6016	🏫 545
145	8700	0.50	0.76	6652	0.69	6088	🏫 552
150	9000	0.49	0.74	6720	0.68		🏫 557
155	9300	0.47	0.72	6777	0.66		🏫 562
160	9600	0.46	0.70	6825	0.64	6246	🏫 565
165	9900	0.45	0.69	6861	0.63	6279	🏫 568
170	10200	0.44	0.67	6888	0.61	6303	🏫 570
175	10500	0.43	0.65	6903	0.60	6317	🏫 571
180	10800	0.42	0.63	6909	0.58	6322	172 📩
360	21600	0.27	0.41	8790	0.37	8041	🛧 719
720	43200	0.18	0.28	12058	0.25	11028	
1440	86400	0.12	0.18	15329	0.16	14018	★ 1190

25 year design Peak Storm required storage

(store or infiltrate 25 year peak flow and volume) 1190 cu ft

Overall Treatment Req and Soil Infiltraion R	ate			
New Impervious Area	11370 SF			
Additional Req Treatment	473.75 CF			
Additional Req Treatment Area (8" depth)	710.625 SF			
Proposed Treatment Area (8" depth)	1800 SF			
Treatment soil infiltration	2 in/hr			
Soil infiltration of Treatment Area 0.08333333 0				
Added Depth of Treatment Area Req'd for Detention 0.66 FT				

Engineers Estin	MATE OF PR	OBAB		STS			
Concrete Sid	EWALK AND	APPRO	DACH				
Bur	NETT ELECTRIC IN	c					
DESCRIPTION	QUANTITY	Units	Uni	UNIT PRICE COS		Cost	
SIDEW	VALK CONSTRUCTION	N					
GRADING AND EXCAVATION	400	SF	\$	0.60	\$	240.00	
SIDEWALK CONSTRUCTION/ CONCRETE (4 FT X100 FT)	400	SF	\$	5.00	\$	2,000.00	
APPROACH CONSTRUCTION/CONRETE	520	SF	\$	5.00	\$	2,600.00	\$ 4,840.00
	SUMMARY						
ESTIMATED COSTS TO CONSTRUCT \$ 4,84					4,840.00		
Contingency (15%) \$ 72					726.00		
TOTAL ESTIMATED COSTS					\$	5,566.00	
	EST	imated F	ROJECT	COSTS	\$	6,000.00	

This Engineers Estimate is based upon the 2013 - 2020 Average Unit Price Report Low Bid Average as
published by ITD, where available and actual bids received.
The Average Unit prices used are assumed to be relatively accurate.
Design Costs include estimated costs for Survey, Drafting, Engineering, Construction Staking, Inspection, As-

Builts, and Estimates including this estimate.

This Estimate is intended to serve as a cost analysis for the Developer